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Abstract

Presently there is a lot of activity in the study of overpartitions,

objects that were discussed by MacMahon, and which have recently

proven useful in several combinatorial studies of basic hypergeometric

series. In this paper we study some similar objects, which we name m-

ary overpartitions. We consider divisibility properties of the number

of m-ary overpartitions of a natural number, and we prove a theo-

rem which is a lifting to general m of the well-known Churchhouse

congruences for the binary partition function.
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1 Introduction

Presently there is a lot of activity in the study of the objects named over-

partitions by Corteel and Lovejoy [2]. According to Corteel and Lovejoy,

these objects were discussed by MacMahon and have recently proven useful

in several combinatorial studies of basic hypergeometric series. In this paper

we study some similar objects, which we name m-ary overpartitions.

Let m ≥ 2 be an integer. An m-ary partition of a natural number n is a

non-increasing sequence of non-negative integral powers of m whose sum is

n. An m-ary overpartition of n is a non-increasing sequence of non-negative

integral powers ofm whose sum is n, and where the first occurrence of a power

of m may be overlined. We denote the number of m-ary overpartitions of n

by bm(n). The overlined parts form an m-ary partition into distinct parts,

and the non-overlined parts form an ordinary m-ary partition. Thus, putting

bm(0) = 1, we have the generating function

Fm(q) =
∞∑

n=0

bm(n)qn =
∞∏

i=0

1 + qm
i

1− qmi .

For example, for m = 2, we find

∞∑

n=0

b2(n)qn = 1 + 2q + 4q2 + 6q3 + 10q4 + 14q5 + . . . ,

where the 10 binary overpartitions of 4 are

1 + 1 + 1 + 1, 1 + 1 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1,

2 + 1 + 1, 2 + 1 + 1, 2 + 2, 2 + 2, 4, 4.

The main object of this paper is to prove the following theorem.

Theorem 1 For each integer r ≥ 1, we have

bm(mr+1n)− bm(mr−1n) ≡ 0 (mod 4mb3r/2c/cb(r−1)/2c),

where c = gcd(3, m).
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Putting m = 2 in Theorem 1, we get

b2(2r+1n)− b2(2r−1n) ≡ 0 (mod 2b3r/2c+2) for r ≥ 1.(1)

Writing b2(n) for the number of binary partitions of n, we have, as noted in

the next section, that b2(n) = b2(2n). Thus (1) can be written as

b2(2r+2n)− b2(2rn) ≡ 0 (mod 2b3r/2c+2) for r ≥ 1.(2)

This result was conjectured by Churchhouse [1]. A number of proofs of (2)

have been given by several authors; cf. [4]. Families of congruences also

appear in the literature for the m-ary partition function which are valid for

any m ≥ 2; cf. [3]. But as far as we know, none of these m-ary results

give the Churchhouse congruences when m = 2. So, Theorem 1 seems to be

the first known lifting to general m of the Churchhouse congruences for the

binary partition function.

We prove Theorem 1 by adapting the technique used in [3]. In Section

2 below we introduce some tools and prove three lemmata. In Section 3 we

complete the proof of Theorem 1. Finally, in Section 4 we state a theorem

which generalizes Theorem 1 and sketch its proof.

2 Auxiliaries

Although many of the objects below depend on m or q (or both), such de-

pendence will sometimes be suppressed by the chosen notation.

The power series in this paper will be elements of Z[[q]], the ring of formal

power series in q with coefficients in Z. We define a Z-linear operator

U : Z[[q]] −→ Z[[q]]

by

U
∑

n

a(n)qn =
∑

n

a(mn)qn.
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Notice that if f(q), g(q) ∈ Z[[q]], then

U(f(q)g(qm)) = (Uf(q))g(q).(3)

Moreover, if f(q) =
∑

n a(n)qn ∈ Z[[q]], and M is a positive integer, then we

have

f(q) ≡ 0 (mod M) (in Z[[q]])

if and only if, for all n,

a(n) ≡ 0 (mod M) (in Z).

At this point, a note is in order on the relationship between the binary

partition function b2(n) and the binary overpartition function b2(n). Since

each natural number has a unique representation as a sum of distinct non-

negative powers of 2, we have

∞∏

i=0

(1 + q2i) =
∞∑

n=0

qn =
1

1− q ,

so that ∞∑

n=0

b2(n)qn =
1

1− q
∞∏

i=0

1

1− q2i
.(4)

For the binary partition function b2(n), we have

∞∑

n=0

b2(n)qn =

∞∏

i=0

1

1− q2i
=

1

1− q
∞∏

i=0

1

1− q2i+1 .

Applying the U -operator with m = 2, we get

∞∑

n=0

b2(2n)qn = U

(
1

1− q
∞∏

i=0

1

1− q2i+1

)

=

(
U

1

1− q

) ∞∏

i=0

1

1− q2i
by (3)

=
1

1− q
∞∏

i=0

1

1− q2i

=
∞∑

n=0

b2(n)qn by (4),
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so that

b2(n) = b2(2n),

as mentioned in the Introduction.

Alternatively, it is rather easy to construct a bijection between the set of

binary overpartitions of n and the set of binary partitions of 2n: Consider a

binary overpartition of n. Multiply each part by 2. Write the overlined parts

as sums of 1s. Then we have a binary partition of 2n. On the other hand,

let a binary partition of 2n be given. The number of 1s is even, and the sum

of 1s can in a unique way be written as a sum of distinct positive powers of

2. Overline these powers of 2. Divide all parts by 2. Then we have a binary

overpartition of n.

For example, starting with a binary overpartition of 11, we get

4 + 2 + 2 + 1 + 1 + 1→ 8 + 4 + 4 + 2 + 2 + 2→

8 + 1 + 1 + 1 + 1 + 4 + 1 + 1 + 2 + 2 = 8 + 4 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1,

which is a binary partition of 22. Conversely, starting with this binary par-

tition of 22, we find

8 + 4 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1→ 8 + 4 + 2 + 2 + 4 + 2

→ 4 + 2 + 1 + 1 + 2 + 1 = 4 + 2 + 2 + 1 + 1 + 1,

which is the original binary overpartition of 11.

We shall use the following result for binomial coefficients.

Lemma 1 For each positive integer r there exist unique integers αr(i), such

that for all n,

(
mn + r − 1

r

)
=

r∑

i=1

αr(i)

(
n + i− 1

i

)
.(5)
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Proof. See the proof of [3, Lemma 1].

Comparing the coefficients of nr in (5), we get

αr(r) = mr,

and comparing the coefficients of mr−1, we get

αr(r − 1) = − 1
2
(r − 1)(m− 1)mr−1,

so that

αr−1(r − 1)− 2αr(r − 1) = (rm−m− r + 2)mr−1.(6)

We also note that by setting n = −j in (5), we get

(−1)jαr(j) = (−1)r
(
mj

r

)
−

j−1∑

i=1

(−1)i
(
j

i

)
αr(i), j = 1, 2, . . . , r.

Next, we put

hi = hi(q) =
q

(1− q)i+1
for i ≥ 0.

Then

hi =

∞∑

n=1

(
n + i− 1

i

)
qn,(7)

so that

Uhr =

∞∑

n=1

(
mn + r − 1

r

)
qn.

It follows from Lemma 1 and (7) that

Uhr =

r∑

i=1

αr(i)hi for r ≥ 1.(8)

In particular,

Uh1 = mh1,(9)

Uh2 = m2h2 − 1
2
(m− 1)mh1,(10)

Uh3 = m3h3 − (m− 1)m2h2 + 1
6
(m− 2)(m− 1)mh1.
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Let

M1 = 4mh1 and Mi+1 = U

(
1 + q

1− qMi

)
for i ≥ 1.

Then

M2 = U

((
2

1− q − 1

)
4mh1

)

= 4m(2Uh2 − Uh1)

= 4m(2m2h2 −m2h1) by (9) and (10)

= 23m3h2 −m2M1.

Similarly, we find

M3 = 24m6h3 − 2m3M2 − 1
3
(2m− 1)(2m+ 1)m3M1.

Lemma 2 For each positive integer r there exist integers µr(i) such that

Mr = 2r+1mr(r+1)/2hr −
r−1∑

i=1

µr(i)Mi,(11)

where

3µr(i) ≡ 0 (mod mb(3(r−i)+1)/2c)(12)

for i = 1, 2, . . . , r − 1.

Note. In the following we set µr(r) = 1 and µr(0) = 0 for r ≥ 1. Notice

that these values of µ satisfy (12).

Proof. We use induction on r. The lemma is true for r = 1. Suppose

that for some r > 1, we have

Mj = 2j+1mj(j+1)/2hj −
j−1∑

i=1

µj(i)Mi for j = 1, 2, . . . , r − 1,(13)

where all the µj(i) are integers satisfying

3µj(i) ≡ 0 (mod mb(3(j−i)+1)/2c), i = 1, 2, . . . , j − 1.
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Then, using (13) with j = r − 1, we get

Mr = U

(
1 + q

1− qMr−1

)

= 2rmr(r−1)/2U

((
2

1− q − 1

)
hr−1

)
−

r−2∑

i=1

µr−1(i)U

(
1 + q

1− qMi

)

= 2r+1mr(r−1)/2Uhr − 2rmr(r−1)/2Uhr−1 −
r−2∑

i=1

µr−1(i)Mi+1.

By (8), we further get

Mr = 2r+1mr(r−1)/2
r∑

i=1

αr(i)hi − 2rmr(r−1)/2
r−1∑

i=1

αr−1(i)hi

−
r−2∑

i=1

µr−1(i)Mi+1

= 2r+1mr(r+1)/2hr −
r−1∑

i=2

µr−1(i− 1)Mi

−
r−1∑

j=1

2rmr(r−1)/2(αr−1(j)− 2αr(j))hj.

Moreover, by (13),

Mr = 2r+1mr(r+1)/2hr −
r−1∑

i=2

µr−1(i− 1)Mi

−
r−1∑

j=1

2r−1−jmr(r−1)/2−j(j+1)/2(αr−1(j)− 2αr(j))

j∑

i=1

µj(i)Mi

= 2r+1mr(r+1)/2hr −
r−1∑

i=2

µr−1(i− 1)Mi

−
r−1∑

i=1

r−1∑

j=i

2r−1−jmr(r−1)/2−j(j+1)/2(αr−1(j)− 2αr(j))µj(i)Mi.

Thus (11) holds with

µr(i) = µr−1(i− 1)(14)
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+

r−1∑

j=i

2r−1−jmr(r−1)/2−j(j+1)/2(αr−1(j)− 2αr(j))µj(i),

so that µr(i) ∈ Z. We continue to show that (12) holds. Since (12) is true

for r = 1, 2, 3, we can assume that r > 3. With exponents of m in mind, we

have
1

2
r(r − 1)− 1

2
j(j + 1) +

⌊
3(j − i) + 1

2

⌋
≥
⌊

3(r − i) + 1

2

⌋

for j ≤ r − 2. Thus we get by (14), (6), and the induction hypothesis,

3µr(i) ≡ 3µr−1(i− 1) + (αr−1(r − 1)− 2αr(r − 1)) · 3µr−1(i)

≡ (rm−m− r + 2)mr−1 · 3µr−1(i) (mod mb(3(r−i)+1)/2c).

Now, looking at exponents of m, we have

r − 1 +

⌊
3(r − 1− i) + 1

2

⌋
>

⌊
3(r − i) + 1

2

⌋
,

and (12) follows.

We notice that by putting i = r − 1 in (14), we get

µr(r − 1) = µr−1(r − 2) + αr−1(r − 1)− 2αr(r − 1),

so that, by (6),

µr(r − 1) = µr−1(r − 2) + (rm−m− r + 2)mr−1 for r > 1.

Since µ1(0) = 0, induction on r gives

µr(r − 1) = (r − 1)mr for r ≥ 1.(15)

Lemma 3 For r ≥ 1, we have

3b(r−1)/2cMr ≡ 0 (mod 4mb3r/2c).(16)
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Proof. We use induction on r. The lemma is true for r = 1. Suppose

that for some r > 1, we have

3b(i−1)/2cMi ≡ 0 (mod 4mb3i/2c)

for i = 1, 2, . . . , r − 1. By Lemma 2 and the induction hypothesis, we find

3b(r−1)/2cMr = 3b(r−1)/2c2r+1mr(r+1)/2hr − µr(r − 1)3b(r−1)/2cMr−1

−
r−2∑

i=1

3b(r−1)/2c−b(i−1)/2c−1 · 3µr(i) · 3b(i−1)/2cMi

≡ −µr(r − 1) · 3b(r−1)/2cMr−1 (mod 4mb3r/2c),

and using (15), (16) follows.

3 Proof of Theorem 1, Concluded

Theorem 1 now follows from Lemma 3 and the following result.

Lemma 4 For r ≥ 1, we have

∞∑

n=1

( bm(mr+1n)− bm(mr−1n))qn = MrFm(q).

Proof. We use induction on r. We have

Fm(q) =
∞∑

n=0

bm(n)qn =
∞∏

i=0

1 + qm
i

1− qmi =
1 + q

1− qFm(qm),

so that

∞∑

n=0

bm(mn)qn =

(
U

1 + q

1− q

)
Fm(q)

=
1 + q

1− qFm(q)

=

(
1 + q

1− q

)2

Fm(qm);
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that is ∞∑

n=0

bm(mn)qn = (4h1 + 1)Fm(qm),

and it follows that
∞∑

n=1

( bm(m2n)− bm(n))qn = M1Fm(q),

so the lemma is true for r = 1.

Suppose that for some r ≥ 2, we have

∞∑

n=1

( bm(mrn)− bm(mr−2n))qn = Mr−1Fm(q).

Then ∞∑

n=1

( bm(mrn)− bm(mr−2n))qn =
1 + q

1− qMr−1Fm(qm),

so that
∞∑

n=1

( bm(mr+1n)− bm(mr−1n))qn =

(
U

(
1 + q

1− qMr−1

))
Fm(q)

= MrFm(q),

and the proof is complete.

4 Restricted m-ary Overpartitions

We close by noting that we can actually prove a result which is stronger

than Theorem 1. For a positive integer k, let bm,k(n) denote the number of

m-ary overpartitions of n, where the largest part is at most mk−1. For this

restricted m-ary overpartition function we have the following result.

Theorem 2 Let s = min(r, k − 1) ≥ 1. Then we have

bm,k(m
r+1n)− bm,k−2(mr−1n) ≡ 0 (mod 4mr+bs/2c/cb(s−1)/2c),

where c = gcd(3, m).
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For a given n, we have bm(n) = bm,k(n) for a sufficiently large value of k.

Therefore, Theorem 2 implies Theorem 1.

We now sketch a proof of Theorem 2. We have the generating function

Fm,k(q) =

∞∑

n=0

bm,k(n)qn =

k−1∏

i=0

1 + qm
i

1− qmi .

Putting Fm,0(q) = 1, minor modifications in the proof of Lemma 4 give the

following lemma.

Lemma 5 For 1 ≤ r ≤ k − 1, we have

∞∑

n=1

( bm,k(m
r+1n)− bm,k−2(mr−1n))qn = MrFm,k−1−r(q).

Now, by Lemma 3 and Lemma 5, Theorem 2 holds for r ≤ k − 1.

For the remaining case r ≥ k, we need one more lemma.

Lemma 6 For v ≥ 1 and t ≥ 0, there exist integers λv,t(i) such that

U tMv =
v∑

i=1

λv,t(i)Mi,

where

3b(v−i)/2cλv,t(i) ≡ 0 (mod mb(3(v−i)+1)/2c+t).

This lemma is proven by induction on t. However, for the induction step we

need the special case t = 1 of the lemma, and this special case is proven by

induction on v.

By Lemma 3 and Lemma 6, we find that

3b(v−1)/2cU tMv ≡ 0 (mod 4mb3v/2c+t)(17)

for v ≥ 1 and t ≥ 0. Applying the operator U t to the identity of Lemma 5

with r = k − 1 ≥ 1, we get, by (17), that Theorem 2 also holds if r =

k − 1 + t ≥ k.
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