International Journal of Mathematics and Mathematical Sciences 16, no. 2 (1993), 413 - 415

CONGRUENCES INVOLVING GENERALIZED FROBENIUS PARTITIONS

JAMES SELLERS

Department of Science and Mathematics Cedarville College Cedarville, OH 45314

ABSTRACT. The goal of this paper is to discuss congruences involving the function $\overline{c\phi_m}(n)$, which denotes the number of generalized Frobenius partitions of n with m colors whose order is m under cyclic permutation of the m colors.

KEYWORDS AND PHRASES. Congruence, partitions. 1991 AMS SUBJECT CLASSIFICATION CODE. 05A17, 11P83.

1. INTRODUCTION.

In 1984, George Andrews [1] introduced the idea of generalized Frobenius partitions, or F– partitions, and discussed many of the properties associated with them. In particular, he studied the function $c\phi_m(n)$, the number of F–partitions of n with m colors. One of the results that Andrews obtained was the following: If m is prime then

$$c\phi_m(n) \equiv 0 \pmod{m^2} \tag{1.1}$$

for all $n \ge 1$ not divisible by m.

More recently, Louis Kolitsch [2,3] has considered the function $\overline{c\phi_m}(n)$, which denotes the number of F-partitions of n with m colors whose order is m under cyclic permutation of the m colors. Kolitsch has proven that, for $m \ge 2$ and for all $n \ge 1$,

$$\overline{c\phi_m}(n) \equiv 0 \pmod{m^2}.$$
(1.2)

2. MAIN RESULT.

We now want to prove the following congruence related to (1.2). THEOREM 1: For m = 5, 7, and 11, and for all $n \ge 1$,

$$\overline{c\phi_m}(mn) \equiv 0 \pmod{m^3}.$$
(2.1)

Proof: In [3], Kolitsch proved that, for all $n \ge 1$,

$$\overline{c\phi_5}(n) = 5 p(5n-1),$$

$$\overline{c\phi_7}(n) = 7 p(7n-2), \text{ and}$$

$$\overline{c\phi_{11}}(n) = 11 p(11n-5)$$

where p(n) is the ordinary partition function. Now we note that

$$\overline{c\phi_5}(5n) = 5 p(25n - 1),$$

$$\overline{c\phi_7}(7n) = 7 p(49n - 2), \text{ and}$$

$$\overline{c\phi_{11}}(11n) = 11 p(121n - 5).$$

Moreover, several authors have shown that

$$p(25n-1) \equiv 0 \pmod{5^2},$$

 $p(49n-2) \equiv 0 \pmod{7^2},$ and
 $p(121n-5) \equiv 0 \pmod{11^2}.$

(See Andrews [4] for an excellent discussion of these congruences first noticed by Srinivasa Ramanujan.) Hence, we see that

$$\overline{c\phi_5}(5n) \equiv 0 \pmod{5^3},$$
$$\overline{c\phi_7}(7n) \equiv 0 \pmod{7^3}, \text{ and}$$
$$\overline{c\phi_{11}}(11n) \equiv 0 \pmod{11^3}.$$

This is the desired result. \blacksquare

3. FINAL REMARKS.

Now it would appear that congruences like (2.1) above hold for other values of m as well. This author has considered congruences of the form above for m = 2 and 3. Values involving $\overline{c\phi_2}(2n)$ and $\overline{c\phi_3}(3n)$ have been found for several values of n, which were easily computed using the generating functions for $c\phi_2(n)$ and $c\phi_3(n)$ developed in [1] and the fact that

$$c\phi_m(mn) = c\phi_m(mn) - p(n)$$

for prime m. Given these, it appears that the following congruences hold:

Conjecture: For all $n \ge 1$,

$$\overline{c\phi_2}(2n) \equiv 0 \pmod{2^3}$$
 and
 $\overline{c\phi_3}(3n) \equiv 0 \pmod{3^3}.$

It may be possible that such a congruence holds for each prime m, although this author has not pursued this.

VALUES OF $\overline{c\phi_2}(2n)$ AND $\overline{c\phi_3}(3n)$

n	$\overline{c\phi_2}(2n)$	$\overline{c\phi_3}(3n)$
1	8	81
2	40	1053
3	144	8424
4	440	50625
5	1208	252720
6	3048	$10\ 99332$
$\overline{7}$	7224	$43\ 01667$
8	16264	$154 \ 51722$
9	35080	$517\ 12830$
10	72968	$1629 \ 97272$
11	$1\ 47088$	$4879\ 27557$
12	$2\ 88424$	$13962 \ 16926$
13	$5\ 51936$	38393 79507
14	$10 \ 33360$	$1 \ 01892 \ 78765$
15	$18\ 96912$	$2\ 61910\ 56294$
16	$34 \ 20296$	6 54024 40254
17	$60 \ 66968$	$15 \ 90662 \ 95911$
18	$106 \ 01000$	$37 \ 76248 \ 81413$
19	$182 \ 68120$	$87 \ 67386 \ 65745$
20	310 78000	$199 \ 40269 \ 12767$
21	$522 \ 41184$	$444 \ 91894 \ 14618$
22	$868 \ 39912$	$975\ 17946\ 80439$
23	1428 50088	$2102 \ 06052 \ 45324$
24	$2326 \ 87400$	$4460 \ 80757 \ 32350$
25	$3755 \ 31240$	$9328 \ 13551 \ 33110$
26	$6007 \ 94432$	$19237 \ 81237 \ 93026$
27	9532 73544	$39158 \ 71787 \ 90619$
28	$15007 \ 49624$	78725 59131 93255
29	$23451 \ 43040$	$1 \ 56420 \ 88838 \ 88750$
30	$36387 \ 99072$	$3 \ 07339 \ 60189 \ 72779$
31	$56081 \ 45688$	$5 \ 97475 \ 96846 \ 87374$
32	85878 93472	$11 \ 49781 \ 94682 \ 00462$
33	$1 \ 30702 \ 49344$	$21 \ 91302 \ 74194 \ 34670$
34	$1 \ 97754 \ 21160$	$41 \ 37759 \ 78755 \ 87103$
35	$2 \ 97521 \ 92096$	$77 \ 44175 \ 44231 \ 50981$
36	$4 \ 45208 \ 02024$	$143\ 71142\ 02610\ 68$
37	$6 \ 62751 \ 31408$	$264 \ 52213 \ 45204 \ 06248$
38	$9\ 81677\ 05768$	$483\ 08784\ 10303\ 77438$
39	$14\ 47099\ 70880$	$875 \ 61540 \ 95101 \ 83201$
40	$21 \ 23324 \ 59688$	$1575\ 59882\ 41835\ 00991$

REFERENCES

- 1. ANDREWS, G. E., <u>Generalized Frobenius Partitions</u>, Memoirs of the American Mathematical Society, Volume 301, Providence, RI, May 1984.
- KOLITSCH, L., An Extension of a Congruence by Andrews for Generalized Frobenius Partitions, J. Combin. Theory Ser. A 45 (1987), 31–39.
- 3. KOLITSCH, L., M–Order Generalized Frobenius Partitions With M Colors, <u>J. Number Theory</u> <u>39</u> (1991), 279–284.
- 4. ANDREWS, G. E., <u>The Theory of Partitions</u>, Encyclopedia of Mathematics and Its Applications, Volume 2, Addison–Wesley, Reading, MA, 1976.