This paper appeared in the Proceedings of the International Workshop on Special Functions, Asymptotics, Harmonic Analysis, and Mathematical Physics, City University of Hong Kong, June 21-25, 1999, published November 2000 by World Scientific, 118-124

SOME RELATIONS FOR PARTITIONS INTO FOUR SQUARES

MICHAEL D. HIRSCHHORN AND JAMES A. SELLERS

July 1999

1. Introduction

Let $p_{4\square}(n)$ denote the number of partitions of n into four squares (of non-negative integers). In an earlier paper [1] it was shown that

$$\sum_{n\geq 0} p_{4\square}(n)q^n = \frac{1}{384} \Big(\phi(q)^4 + 4\phi(q)^3 + 12\phi(q)^2\phi(q^2) + 18\phi(q)^2 + 24\phi(q)\phi(q^2) + 12\phi(q^2)^2 + 32\phi(q)\phi(q^3) + 60\phi(q) + 36\phi(q^2) + 32\phi(q^3) + 48\phi(q^4) + 105 \Big)$$

where

$$\phi(q) = \sum_{-\infty}^{\infty} q^{n^2}.$$

We expanded this generating function to the 2000th power, and discovered that $p_{4\square}(n)$ satisfies a few, a very few, simple arithmetic relations.

By contrast, as is well-known, $r_4(n)$, the number of representations of n as a sum of four squares, exhibits many arithmetic properties, namely,

if n is 2–free then

$$r_4(2^{\alpha}n) = 3r_4(n) \text{ if } \alpha \ge 1,$$

Typeset by $\mathcal{A}_{\mathcal{M}} \mathcal{S}\text{-}T_{E} X$

and if p is an odd prime and n is p-free then

$$r_4(p^{\alpha}n) = \frac{p^{\alpha+1}-1}{p-1}r_4(n).$$

In this paper we shall show that

$$(1) p_{4\square}(8n) = p_{4\square}(2n)$$

and

(2)
$$p_{4\square}(32n+28) = 3p_{4\square}(8n+7).$$

If we combine these, we find

(3)
$$p_{4\square}(4^{\alpha}(8n+7)) = 3p_{4\square}(8n+7) \text{ for } \alpha \ge 1.$$

We shall also show that

(4)
$$p_{4\Box}(72n+69)$$
 is even.

2. Proof of (1)

 ${\rm Suppose}$

$$2n = m_1^2 + m_2^2 + m_3^2 + m_4^2.$$

Then

$$8n = (2m_1)^2 + (2m_2)^2 + (2m_3)^2 + (2m_4)^2.$$

Conversely, suppose

$$8n = x_1^2 + x_2^2 + x_3^2 + x_4^2.$$

By considering this modulo 8, since squares are congruent to 0, 1 or 4 (mod 8), we see that x_1 , x_2 , x_3 , x_4 are all even. Let $m_1 = x_1/2$, $m_2 = x_2/2$, $m_3 = x_2/2$, $m_4 = x_4/2$. Then

$$2n = m_1^2 + m_2^2 + m_3^2 + m_4^2.$$

Thus there is a one-to-one correspondence between partitions of 2n into four squares and partitions of 8n into four squares. This proves (1).

3. Proof of (2)

Suppose

$$8n + 7 = m_1^2 + m_2^2 + m_3^2 + m_4^2$$

with $m_1, m_2, m_3, m_4 \ge 0$. Then w.l.o.g.

$$\begin{pmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \end{pmatrix} \equiv \begin{pmatrix} 2 \\ \pm 1 \\ \pm 1 \\ \pm 1 \end{pmatrix} \pmod{4}$$

and $m_2 \ge m_3 \ge m_4 > 0$.

Then x_1, x_2, x_3, x_4 are uniquely defined by

$$\{x_1, x_2, x_3, x_4\} = \{m_1, \pm m_2, \pm m_3, \pm m_4\}, \\ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \equiv \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \end{pmatrix} \pmod{4}$$

and

$$x_2 \ge x_3 \ge x_4.$$

Let

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 + x_3 + x_4 \\ x_1 + x_2 - x_3 - x_4 \\ x_1 - x_2 + x_3 - x_4 \\ x_1 - x_2 - x_3 + x_4 \end{pmatrix}, \quad \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = \begin{pmatrix} -x_1 + x_2 + x_3 + x_4 \\ -x_1 + x_2 - x_3 - x_4 \\ -x_1 - x_2 - x_3 - x_4 \\ -x_1 - x_2 - x_2 + x_4 \end{pmatrix}$$

Then

$$(2m_1)^2 + (2m_2)^2 + (2m_3)^2 + (2m_4)^2 = y_1^2 + y_2^2 + y_3^2 + y_4^2 = z_1^2 + z_2^2 + z_3^2 + z_4^2 = 32n + 28,$$

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} \equiv \begin{pmatrix} 5 \\ 1 \\ 1 \\ 1 \end{pmatrix} \pmod{8}, \quad \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} \equiv \begin{pmatrix} 1 \\ 5 \\ 5 \\ 5 \end{pmatrix} \pmod{8} \text{ or } vice \ versa$$

and

$$y_2 \ge y_3 \ge y_4, \ z_2 \ge z_3 \ge z_4.$$

•

Conversely, if

$$32n + 28 = m_1^2 + m_2^2 + m_3^2 + m_4^2$$

with m_1 , m_2 , m_3 , $m_4 \ge 0$, then w.l.o.g.

$$\begin{pmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \end{pmatrix} \equiv \begin{pmatrix} 4 \\ \pm 2 \\ \pm 2 \\ \pm 2 \end{pmatrix} \text{ or } \begin{pmatrix} \pm 5 \\ \pm 1 \\ \pm 1 \\ \pm 1 \end{pmatrix} \text{ or } \begin{pmatrix} \pm 1 \\ \pm 5 \\ \pm 5 \\ \pm 5 \end{pmatrix} \pmod{8}$$

and $m_2 \ge m_3 \ge m_4 > 0$.

In the first case, define x_1, x_2, x_3, x_4 by $x_1 = m_1/2, x_2 = m_2/2, x_3 = m_3/2, x_4 = m_4/2$ and then

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = 8n + 7.$$

Otherwise, x_1 , x_2 , x_3 , x_4 are uniquely defined by

$$\{x_1, x_2, x_3, x_4\} = \{\pm m_1, \pm m_2, \pm m_3, \pm m_4\},\$$
$$\binom{x_1}{x_2}_{x_3} \equiv \binom{5}{1}_{1}_{1} \text{ or } \binom{1}{5}_{5}_{5} \pmod{8}$$

and $x_2 \ge x_3 \ge x_4$. Let

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} (x_1 + x_2 + x_3 + x_4)/4 \\ (x_1 + x_2 - x_3 - x_4)/4 \\ (x_1 - x_2 + x_3 - x_4)/4 \\ (x_1 - x_2 - x_3 + x_4)/4 \end{pmatrix}.$$

Then

$$\begin{pmatrix} y_1\\y_2\\y_3\\y_4 \end{pmatrix} \equiv \begin{pmatrix} 2\\1\\1\\1 \end{pmatrix} \pmod{4},$$

 $y_2 \ge y_3 \ge y_4$ and

$$y_1^2 + y_2^2 + y_3^2 + y_4^2 = 8n + 7.$$

This establishes a one-to-three correspondence between partitions of 8n + 7 into four squares and partitions of 32n + 28 into four squares. This proves (2).

An example

If
$$n = 7$$
, $8n + 7 = 63$, $32n + 28 = 252$,

$$63 = 7^2 + 3^2 + 2^2 + 1^2 = 6^2 + 5^2 + 1^2 + 1^2 = 6^2 + 3^2 + 3^2 + 3^2 = 5^2 + 5^2 + 3^2 + 2^2.$$

These partitions correspond to the vectors

$$\begin{pmatrix} 2\\1\\-3\\-7 \end{pmatrix}, \begin{pmatrix} 6\\5\\1\\1 \end{pmatrix}, \begin{pmatrix} 6\\-3\\-3\\-3 \end{pmatrix} \text{ and } \begin{pmatrix} 2\\5\\5\\-3 \end{pmatrix}.$$

As described above, these yield the following twelve vectors corresponding to partitions of 252 into four squares,

$$\left\{ \begin{pmatrix} 4\\2\\-6\\-14 \end{pmatrix}, \begin{pmatrix} -7\\13\\5\\-3 \end{pmatrix}, \begin{pmatrix} -11\\9\\1\\-7 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 12\\10\\2\\2 \end{pmatrix}, \begin{pmatrix} 13\\9\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-3\\-11\\-11 \end{pmatrix} \right\}, \\ \left\{ \begin{pmatrix} 12\\-6\\-6\\-6 \end{pmatrix}, \begin{pmatrix} -3\\9\\9\\9 \end{pmatrix}, \begin{pmatrix} -15\\-3\\-3\\-3\\-3 \end{pmatrix} \right\} \text{ and } \left\{ \begin{pmatrix} 4\\10\\10\\-6 \end{pmatrix}, \begin{pmatrix} 9\\5\\5\\-11 \end{pmatrix}, \begin{pmatrix} 5\\1\\1\\-15 \end{pmatrix} \right\}.$$

Thus we find

$$252 = 15^{2} + 5^{2} + 1^{2} + 1^{2} = 15^{2} + 3^{2} + 3^{2} + 3^{2} = 14^{2} + 6^{2} + 4^{2} + 2^{2} = 13^{2} + 9^{2} + 1^{2} + 1^{2}$$

= $13^{2} + 7^{2} + 5^{2} + 3^{2} = 12^{2} + 10^{2} + 2^{2} + 2^{2} = 12^{2} + 6^{2} + 6^{2} + 6^{2} = 11^{2} + 11^{2} + 3^{2} + 1^{2}$
= $11^{2} + 9^{2} + 7^{2} + 1^{2} = 11^{2} + 9^{2} + 5^{2} + 5^{2} = 10^{2} + 10^{2} + 6^{2} + 4^{2} = 9^{2} + 9^{2} + 9^{2} + 3^{2}.$

4. Proof of (4)

Suppose

$$72n + 69 = m_1^2 + m_2^2 + m_3^2 + m_4^2$$

with $m_1, m_2, m_3, m_4 \ge 0$.

It is easy to show by considering this equation modulo 9 that precisely one of the m_i is congruent to 0 modulo 3, so

$$72n + 69 - 9m^2 = m_1^2 + m_2^2 + m_3^2.$$

We shall show that for each m, the number of solutions of this equation is even. W.l.o.g.

$$\begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} \equiv \begin{pmatrix} \pm 1 \\ \pm 1 \\ \pm 2 \end{pmatrix} \text{ or } \begin{pmatrix} \pm 2 \\ \pm 2 \\ \pm 4 \end{pmatrix} \text{ or } \begin{pmatrix} \pm 4 \\ \pm 4 \\ \pm 1 \end{pmatrix} \pmod{9}$$

and $m_1 \ge m_2$.

Then x_1, x_2, x_3 are uniquely defined by

$$\{x_1, x_2, x_3\} = \{\pm m_1, \pm m_2, \pm m_3\},\$$
$$\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} \equiv \begin{pmatrix}1\\1\\-2\end{pmatrix} \text{ or } \begin{pmatrix}-2\\-2\\4\end{pmatrix} \text{ or } \begin{pmatrix}4\\4\\1\end{pmatrix} \pmod{9}$$

 $\quad \text{and} \quad$

$$x_1 \ge x_2.$$

Let

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} (x_1 - 2x_2 - 2x_3)/3 \\ (-2x_1 + x_2 - 2x_3)/3 \\ (-2x_1 - 2x_2 + x_3)/3 \end{pmatrix}.$$

Then

$$y_1^2 + y_2^2 + y_3^2 = x_1^2 + x_2^2 + x_3^2 = 72n + 69 - 9m^2,$$

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \equiv \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \text{ or } \begin{pmatrix} -2 \\ -2 \\ 4 \end{pmatrix} \text{ or } \begin{pmatrix} 4 \\ 4 \\ 1 \end{pmatrix} \pmod{9}$$

and

$$y_1 \ge y_2.$$

Indeed, $y_1 - y_2 = x_1 - x_2$, $y_2 - y_3 = x_2 - x_3$ and $y_1 + y_2 + y_3 = -(x_1 + x_2 + x_3)!$ The transformation $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \rightarrow \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$ is an involution with no fixed points. For fixed points have $x_1 + x_2 + x_3 = 0$, or, $x_3 = -x_1 - x_2$, and then

$$x_1^2 + x_2^2 + x_3^2 = 2(x_1^2 + x_1x_2 + x_2^2).$$

But the highest power of 2 that divides $2(x_1^2 + x_1x_2 + x_2^2)$ is odd, while the highest power of 2 that divides $72n + 69 - 9m^2$ is even.

So the number of solutions of

$$72n + 69 - 9m^2 = m_1^2 + m_2^2 + m_3^2$$

with $m_1, m_2, m_3 \ge 0$ is even. This proves (4).

An example

If
$$n = 3$$
, $72n + 69 = 285$,

$$285 = 16^{2} + 5^{2} + 2^{2} + 0^{2} = 16^{2} + 4^{2} + 3^{2} + 2^{2} = 14^{2} + 9^{2} + 2^{2} + 2^{2} = 14^{2} + 8^{2} + 5^{2} + 0^{2}$$

= $14^{2} + 8^{2} + 4^{2} + 3^{2} = 14^{2} + 7^{2} + 6^{2} + 2^{2} = 13^{2} + 10^{2} + 4^{2} + 0^{2} = 13^{2} + 8^{2} + 6^{2} + 4^{2}$
= $12^{2} + 11^{2} + 4^{2} + 2^{2} = 12^{2} + 10^{2} + 5^{2} + 4^{2} = 11^{2} + 10^{2} + 8^{2} + 0^{2} = 11^{2} + 8^{2} + 8^{2} + 6^{2}$
= $10^{2} + 10^{2} + 9^{2} + 2^{2} = 10^{2} + 10^{2} + 7^{2} + 6^{2}$.

These partitions correspond to the following vectors, arranged in corresponding pairs.

$$(m=0) \left\{ \begin{pmatrix} 16\\-2\\-5 \end{pmatrix}, \begin{pmatrix} 10\\-8\\-11 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} -5\\-14\\-8 \end{pmatrix}, \begin{pmatrix} 13\\4\\10 \end{pmatrix} \right\}, (m=1) \left\{ \begin{pmatrix} 16\\-2\\4 \end{pmatrix}, \begin{pmatrix} 4\\-14\\-8 \end{pmatrix} \right\}, (m=2) \left\{ \begin{pmatrix} 7\\-2\\-14 \end{pmatrix}, \begin{pmatrix} 13\\4\\-8 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} -8\\-8\\-11 \end{pmatrix}, \begin{pmatrix} 10\\10\\7 \end{pmatrix} \right\}, (m=3) \left\{ \begin{pmatrix} -2\\-2\\-14 \end{pmatrix}, \begin{pmatrix} 10\\10\\-2 \end{pmatrix} \right\}, (m=4) \left\{ \begin{pmatrix} -2\\-11\\4 \end{pmatrix}, \begin{pmatrix} 4\\-5\\10 \end{pmatrix} \right\}.$$

Reference

[1] M. D. Hirschhorn, Some formulae for partitions into squares, Discrete Math. (to appear).