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Abstract:

Let bm(n) denote the number of partitions of n into powers of m. Define

σr = ε2m
2 + ε3m

3 + · · · + εrm
r, where εi = 0 or 1 for each i. Moreover, let

cr = 1 if m is odd, and cr = 2r−1 if m is even. The main goal of this paper

is to prove the congruence

bm(mr+1n− σr −m) ≡ 0 (mod mr/cr).

For σr = 0, the existence of such a congruence was conjectured by R. F. Church-

house some thirty years ago, and its truth was proved by Ø. J. Rødseth,

G. E. Andrews, and H. Gupta soon after.
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Keywords : partitions, congruences

1 Introduction

In 1968, while working with the best in comtemporary computing technology

at the Atlas Computer Laboratory, R. F. Churchhouse [2] discovered the

following facts about the binary partition function b(n): For all k, n ≥ 1,

b(22k+2n) ≡ b(22kn) (mod 23k+2) and

b(22k+1n) ≡ b(22k−1n) (mod 23k),

where b(n) is the number of ways to represent n as

n = 2a0 + 2a1 + · · ·

with 0 ≤ a0 ≤ a1 ≤ . . .

Within months, several mathematicians expanded on Churchhouse’s orig-

inal results. Indeed, Rødseth [5] proved Churchhouse’s congruences, and also

proved, among other things, that for all odd primes p and all r, n ≥ 1,

bp(p
r+1n) ≡ bp(p

rn) (mod pr). (1)
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The function bm(n) is the number of m–ary partitions of n, or the number

of representations of n as

n = ma0 + ma1 + · · ·

with 0 ≤ a0 ≤ a1 ≤ . . .

Andrews [1] extended (1) by proving that, for all m ≥ 2 and all r, n ≥ 1,

bm(mr+1n) ≡ bm(mrn) (mod
mr

cr

) (2)

where cr = 1 if m is odd and cr = 2r if m is even. Finally, Gupta [4]

sharpened Andrews’result by showing that (2) holds with cr = 2r−1 when m

is even.

It is easy to see that the generating function for bm(n) is given by

Bm(q) =
∞∑

n=0

bm(n)qn =
∞∏
i=0

1

1− qmi ,

which clearly satisfies (1− q)Bm(q) = Bm(qm). Thus,

bm(mn)− bm(n) = bm(mn− 1),

and

bm(mn− 1) = bm(mn− 2) = . . . = bm(mn−m).

This allows (2) to be rewritten in the form

bm(mr+1n−m) ≡ 0 (mod
mr

cr

). (3)

The intent of this paper is to prove a family of congruences of which (3)

is simply one subset. Indeed, we will see that a binary tree of congruences

holds, for which (3) is simply one branch.

Our main goal is to prove the following:

Theorem 1 Let r ≥ 1, and define

σr =
r∑

i=2

εim
i
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where εi = 0 or 1 for each i. Finally, let cr = 1 if m is odd, and cr = 2r−1 if

m is even. Then, for all n ≥ 1,

bm(mr+1n− σr −m) ≡ 0 (mod
mr

cr

). (4)

Note that (4) is Gupta’s result in the case when σr = 0. Moreover, note

that the presence of σr implies that (4) gives 2r−1 different congruences for

each value of r. This is in contrast with (3), where only one congruence is

proven for each r.

In order to prove Theorem 1, we will actually prove a stronger theorem

by studying a specific restricted m–ary partition function. Let bm,k(n) be the

number of representations of n of the form

n = ma0 + ma1 + · · ·+ maj

with 0 ≤ a0 ≤ a1 ≤ . . . ≤ aj < k. If we denote the generating function for

bm,k(n) by Bm,k(q), then we have

Bm,k(q) =
k−1∏
i=0

∞∑
j=0

qjmi

=
k−1∏
i=0

1

1− qmi ,

and it is easily seen that bm,k(n) also equals the number of representations

of n of the form

n = c0 + c1m + c2m
2 + · · · , 0 ≤ ci < mk.

We now state our stronger theorem.

Theorem 2 Let r ≥ 1, k ≥ 2, and s = min(r, k − 1). Moreover, let σs and

cs be defined as in Theorem 1. Then

bm,k(m
r+1n− σs −m) ≡ 0 (mod

mr

cs

).

Two remarks are in order before moving to the proof of Theorem 2. First, we

note that the case σs = 0 of Theorem 2 was proven by Dirdal [3, Theorem 2].

Secondly, it is clear that, for a given n, bm(n) = bm,k(n) for a sufficiently large

value of k. Therefore, Theorem 1 must follow once Theorem 2 is proven.
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In section 2 below, we briefly mention some preliminaries needed through-

out the remainder of the paper. We provide the bulk of the mathematical

work needed, including several crucial lemmata, in Section 3. We close the

paper in Section 4 by incorporating the various results in Section 3 to com-

plete the proof of Theorem 2.

2 Preliminaries

Let Z[[q]] be the ring of formal power series in q with coefficients in Z. We

define a Z-linear operator U : Z[[q]] −→ Z[[q]] by putting

U
∑
n

a(n)qn =
∑
n

a(mn)qn. (5)

Notice that

U
∑
n

a(n)qn+1 =
∑
n

a(mn− 1)qn, (6)

and if f(q), g(q) ∈ Z[[q]], then

U(f(q)g(qm)) = (Uf(q))g(q). (7)

Finally, if f(q) =
∑

n a(n)qn, g(q) =
∑

n c(n)qn ∈ Z[[q]] and M is a positive

integer, then we know

f(q) ≡ g(q) (mod M) (in Z[[q]])

if and only if, for all n,

a(n) ≡ c(n) (mod M) (in Z).

3 The Lemmata

We open this section with a lemma concerning binomial coefficients.

Lemma 1 If n, r ≥ 1, then there exist αr(i) ∈ Z such that(
mn + r − 1

r

)
=

r∑
i=1

αr(i)

(
n + i− 1

i

)
. (8)
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Proof. We consider the binomial coefficients involved as polynomials in n

over Q. Since
(

mn+r−1
r

)
is a polynomial of degree r in n, and

(
n+i−1

i

)
is a

polynomial of degree i in n, i = 0, 1, . . . , r, there exist αr(i) ∈ Q such that(
mn + r − 1

r

)
=

r∑
i=0

αr(i)

(
n + i− 1

i

)
.

Putting n = 0, we see that αr(0) = 0. Putting n = −j, we get

(−1)jαr(j) = (−1)r

(
mj

r

)
−

j−1∑
i=1

(−1)i

(
j

i

)
αr(i), j = 1, 2, . . . , r.

By induction on i, it follows that all the αr(i) are integers.

Comparing the coefficients of nr in (8), we get

αr(r) = mr, (9)

and comparing the coefficients of nr−1, we get

αr(r − 1) = −1

2
(r − 1)(m− 1)mr−1. (10)

We also have

αr(j) = 0 for mj < r (i.e., if j ≤
⌊r − 1

m

⌋
).

Next, let

hi = hi(q) =
q

(1− q)i+1
, i ≥ 0.

Then

hi =
∞∑

n=1

(
n + i− 1

i

)
qn, (11)

so that

Uhr = U
∞∑

n=1

(
n + r − 1

r

)
qn =

∞∑
n=1

(
mn + r − 1

r

)
qn.

It follows from Lemma 1 and (11) that

Uhr =
r∑

i=1

αr(i)hi, r ≥ 1. (12)
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Let

H0 = h0 and Hi+1 = U
( 1

1− q
Hi

)
, i ≥ 0. (13)

Then we have

H1 = mh1 and H2 = m3h2 −
(
m

2

)
H1.

We can prove analogous results for Hr for each r ≥ 1.

Lemma 2 Let c2 = 1 if m is odd and c2 = 2 if m is even (as in the statement

of Theorem 1). Then, for r ≥ 1, there exist βr(i) ∈ Z such that

Hr = m
1
2
r(r+1)hr −

r−1∑
i=1

βr(i)Hi, (14)

where

βr(i) ≡ 0 (mod
mr−i

c2

), i = 1, 2, . . . , r − 1. (15)

Note. In the following we set βr(r) = 1 and βr(0) = 0 for all r ≥ 1.

Proof. We use induction on r. The lemma is true for r = 1. Suppose that

for some r > 1, we have

Hj = m
1
2
j(j+1)hj −

j−1∑
i=1

βj(i)Hi, j = 1, 2, . . . , r − 1, (16)

where all the βj(i) are integers satisfying

βj(i) ≡ 0 (mod
mj−i

c2

), i = 1, 2, . . . , j − 1. (17)

Then

Hr = U
( 1

1− q
Hr−1

)
= m

1
2
(r−1)rUhr −

r−2∑
i=1

βr−1(i)Hi+1,

and, by (12),

Hr = m
1
2
(r−1)r

r∑
j=1

αr(j)hj −
r−1∑
i=2

βr−1(i− 1)Hi.
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Using (9) and (16), we further get

Hr = m
1
2
r(r+1)hr +

r−1∑
j=1

m
1
2
(r−1)r− 1

2
j(j+1)αr(j)

j∑
i=1

βj(i)Hi −
r−1∑
i=1

βr−1(i− 1)Hi

= m
1
2
r(r+1)hr +

r−1∑
i=1

r−1∑
j=i

m
1
2
(r−1)r− 1

2
j(j+1)αr(j)βj(i)Hi −

r−1∑
i=1

βr−1(i− 1)Hi.

Thus (14) holds with

βr(i) = βr−1(i− 1)−
r−1∑
j=i

m
1
2
(r−1)r− 1

2
j(j+1)αr(j)βj(i),

so that βr(i) ∈ Z. Since 1
2
(r − 1)r − 1

2
j(j + 1) ≥ r − 1 for j ≤ r − 2, we

further have

βr(i) ≡ βr−1(i− 1)− αr(r − 1)βr−1(i) (mod mr−1),

and, by (17) and (10), we see that (15) holds.

Lemma 3 Let cs be defined as in Theorem 1. For r ≥ 1, there exist γr(i) ∈ Z

such that

UHr =
r∑

i=1

γr(i)Hi, (18)

where

γr(i) ≡ 0 (mod
mr+1−i

cr+1−i

), i = 1, 2, . . . , r. (19)

Proof. We use induction on r. We have UH1 = mH1, so the lemma is true

for r = 1. Suppose that for some r > 1, we have

UHj =
j∑

i=1

γj(i)Hi, j = 1, 2, . . . , r − 1, (20)

where all the γj(i) are integers satisfying

γj(i) ≡ 0 (mod
mj+1−i

cj+1−i

). (21)
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Applying U to (14), and using (12) and (20), we have

UHr = m
1
2
r(r+1)Uhr −

r−1∑
j=1

βr(j)UHj

= m
1
2
r(r+1)

r∑
j=1

αr(j)hj −
r−1∑
j=1

βr(j)
j∑

i=1

γj(i)Hi

=
r∑

j=1

m
1
2
r(r+1)− 1

2
j(j+1)αr(j)

j∑
i=1

βj(i)Hi −
r−1∑
i=1

r−1∑
j=i

βr(j)γj(i)Hi

=
r∑

i=1

r∑
j=i

m
1
2
r(r+1)− 1

2
j(j+1)αr(j)βj(i)Hi −

r−1∑
i=1

r−1∑
j=i

βr(j)γj(i)Hi.

Thus (18) holds with

γr(i) =
r∑

j=i

m
1
2
r(r+1)− 1

2
j(j+1)αr(j)βj(i)−

r−1∑
j=i

βr(j)γj(i),

which shows that all the γr(i) are integers. For 1 ≤ j ≤ r − 1, we have
1
2
r(r + 1)− 1

2
j(j + 1) ≥ r, so that, using (9),

γr(i) ≡ −
r−1∑
j=i

βr(j)γj(i) (mod mr),

and by (15) and (21), we obtain (19).

Lemma 4 For r ≥ 1 and t ≥ 0, there exist γr,t(i) ∈ Z such that

U tHr =
r∑

i=1

γr,t(i)Hi, (22)

where

γr,t(i) ≡ 0 (mod
mr+t−i

cr+1−i

), i = 1, 2, . . . , r. (23)

Proof. We use induction on t. The lemma is trivially true for t = 0. Suppose

that the lemma is true for t replaced by t− 1 for some t ≥ 1. Using Lemma
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3, we have

U tHr =
r∑

j=1

γr,t−1(j)UHj =
r∑

j=1

γr,t−1(j)
j∑

i=1

γj(i)Hi

=
r∑

i=1

r∑
j=i

γr,t−1(j)γj(i)Hi,

and we see that (22) holds with

γr,t(i) =
r∑

j=i

γr,t−1(j)γj(i).

Thus, all the γr,t(i) are integers. By the induction hypothesis and (19), we

have

γr,t−1(j)γj(i) ≡ 0 (mod
mr+t−1−j

cr+1−j

· mj+1−i

cj+1−i

)

or

γr,t−1(j)γj(i) ≡ 0 (mod
mr+t−i

cr+1−i

).

Therefore, (23) is satisfied and the proof is complete.

We now define Ki = Ki(q) by

K1 = H1, Ki = U
( qεi

1− q
Ki−1

)
for i ≥ 2, (24)

where εi = 0 or 1 for each i (as in the statement of Theorem 1). Then we

have the following lemma.

Lemma 5 For r ≥ 1, there exist κr(i) ∈ Z such that

Kr =
r∑

i=1

κr(i)Hi, (25)

where κr(r) = 1, and

κr(i) ≡ 0 (mod
mr−i

cr−i

), i = 1, 2, . . . , r − 1. (26)
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Proof. We use induction on r. The lemma is trivially true for r = 1.

Suppose the lemma is true for r replaced by r − 1 for some r ≥ 2. Putting

κr(0) = 0 for all r, we have

U
( 1

1− q
Kr−1

)
=

r−1∑
i=1

κr−1(i)U
( 1

1− q
Hi

)

=
r−1∑
i=1

κr−1(i)Hi+1 =
r∑

i=1

κr−1(i− 1)Hi.

Moreover, using Lemma 3, we get

UKr−1 =
r−1∑
j=1

κr−1(j)UHj =
r−1∑
j=1

κr−1(j)
j∑

i=1

γj(i)Hi

=
r−1∑
i=1

r−1∑
j=i

κr−1(j)γj(i)Hi.

Now we have

Kr = U
( qεr

1− q
Kr−1

)
= U

( 1

1− q
Kr−1 − εrKr−1

)
=

r∑
i=1

κr−1(i− 1)Hi − εr

r−1∑
i=1

r−1∑
j=i

κr−1(j)γj(i)Hi.

Thus (25) holds with

κr(i) = κr−1(i− 1)− εr

r−1∑
j=i

κr−1(j)γj(i).

Then all the κr(i) are integers, and in particular κr(r) = κr−1(r − 1) = 1.

Using the induction hypothesis and (19), we also see that (26) holds.

Lemma 6 For r = 1, 2, . . . , k − 1, we have

∞∑
n=1

bm,k(m
r+1n− σr −m)qn = Kr(q)Bm,k−r−1(q). (27)

Proof. It is clear that, for k ≥ 1,

Bm,k(q) =
1

1− q
Bm,k−1(q

m). (28)
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Suppose that k ≥ 2. Because

Bm,k(q) =
∞∑

n=0

bm,k(n)qn,

we see from (28) that

∞∑
n=0

bm,k(n)qn =
1

1− q
Bm,k−1(q

m).

Since U 1
1−q

= 1
1−q

, (7) and (28) imply that

∞∑
n=0

bm,k(mn)qn+1 = H0(q)Bm,k−1(q) =
1

1− q
H0(q)Bm,k−2(q

m).

By (6), (7), (13), and (24), it follows that (27) is true for r = 1.

Suppose that (27) holds for r replaced by r− 1 for some r in the interval

2 ≤ r ≤ k − 1. By (28), we then have

∞∑
n=1

bm,k(m
rn− σr−1 −m)qn+εr =

qεr

1− q
Kr−1(q)Bm,k−r−1(q

m).

Now use (5) if εr = 0 and (6) if εr = 1. Then, by (7) and (24), we obtain

(27), which completes the proof.

4 Proof of Theorem 2

With the various lemmata provided in the previous section, we can now

quickly prove Theorem 2. Using Lemma 2, we get by induction on r that

Hr(q) ≡ 0 (mod
mr

cr

), r ≥ 1. (29)

It follows by Lemma 5 that

Kr(q) ≡ 0 (mod
mr

cr

), r ≥ 1.

Thus, by Lemma 6, Theorem 2 holds for 1 ≤ r ≤ k − 1.
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Next, suppose that r ≥ k − 1 ≥ 1. Let r = k − 1 + t, t ≥ 0. By Lemma

6 (with r = k − 1) and Lemma 5,

∞∑
n=1

bm,k(m
kn− σk−1 −m)qn = Kk−1(q) =

k−1∑
j=1

κk−1(j)Hj(q).

Applying U t and using Lemma 4, we get

∞∑
n=1

bm,k(m
r+1n− σk−1 −m)qn =

k−1∑
j=1

κk−1(j)U
tHj

=
k−1∑
j=1

κk−1(j)
j∑

i=1

γj,t(i)Hi

=
k−1∑
i=1

k−1∑
j=i

κk−1(j)γj,t(i)Hi.

By Lemma 5, (23), and (29), it follows that

κk−1(j)γj,t(i)Hi ≡ 0 (mod
mk−1+t

ck−1

).

Thus

bm,k(m
r+1n− σk−1 −m) ≡ 0 (mod

mr

ck−1

) if 1 ≤ k − 1 ≤ r.

This completes the proof of Theorem 2.
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