
Abstract

In this paper, we consider sequences comprised of n (m− 1)’s and

r −1’s (where m ≥ 2) with the sum of each subsequence of the first

j terms nonnegative. We will denote the number of such sequences

as
{

n
r

}
m−1

. Our goal is to present various results involving
{

n
r

}
m−1

,

including an interpretation of the sequences counted by
{

n
r

}
m−1

which

truly generalizes the proof that Cn = 1
n+1

(
2n
n

)
. In particular, we pay

special attention to the case r = (m− 1)n (the largest allowable value

of r for fixed m) and prove that

{
n

(m − 1)n

}
m−1

=
1

(m − 1)n + 1

(
mn

n

)
.
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Introduction

In a recent note in the Mathematics Magazine [1], D. F. Bailey developed a

formula for the number of sequences

a1, a2, . . . , an+r

comprised of n 1’s and r −1’s such that
∑j

i=1 aj ≥ 0 for each j = 1, 2, . . . , n + r.

He denoted the number of such sequences as
{

n
r

}
and noted that{

n
r

}
=

{
n

r − 1

}
+

{
n − 1

r

}
(1)
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for 1 < r < n and {
n
n

}
=

{
n

n − 1

}
(2)

for each n ≥ 1. From these facts, it is easy to build the following table of

values for
{

n
r

}
.

n\r 0 1 2 3 4 5 6 7 8
0 1
1 1 1
2 1 2 2
3 1 3 5 5
4 1 4 9 14 14
5 1 5 14 28 42 42
6 1 6 20 48 90 132 132
7 1 7 27 75 165 297 429 429
8 1 8 35 110 275 572 1001 1430 1430

Table 1: Values for
{

n
r

}
Indeed, Bailey obtains the identity

{
n
r

}
=

(n + 1 − r)(n + 2)(n + 3) . . . (n + r)

r!

whenever n ≥ r ≥ 2. Bailey closes the paper by noting that

{
n
n

}
=

1

n + 1

(
2n

n

)
,

the nth Catalan number Cn. This is not surprising, as one of the classical

combinatorial interpretations of Cn is the number of sequences of n 1’s and

n −1’s that satisfy the subsequence sum restriction mentioned above. In this
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context, Bailey provided a very nice generalization of the classical Catalan

numbers.

In this paper, we generalize Bailey’s work by considering sequences com-

prised of n (m − 1)’s and r −1’s (where m ≥ 2) with the sum of each

subsequence of the first j terms nonnegative. We will denote the number of

such sequences as
{

n
r

}
m−1

.

It is clear that the recurrences similar to (1) and (2) are satisfied for

general values of m. Namely,

{
n
r

}
m−1

=

{
n − 1

r

}
m−1

+

{
n

r − 1

}
m−1

(3)

for 1 < r < n and

{
n

(m − 1)n

}
m−1

=

{
n

(m − 1)n − 1

}
m−1

=

{
n

(m − 1)n − 2

}
m−1

= . . .

. . . =

{
n

(m − 1)n − (m − 1)

}
m−1

(4)

for each n ≥ 1. The recurrence in (3) is seen in a straightforward manner.

Take a sequence of n (m−1)’s and r −1’s which is counted by
{

n
r

}
m−1

. The

last element in the sequence is either an m − 1 or a −1. If it is an m − 1,

then the preceding subsequence is one of those counted by
{

n−1
r

}
m−1

. On

the other hand, if the last element of our original sequence is a −1, then the

preceding subsequence is one of those enumerated in
{

n
r−1

}
m−1

.
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To establish (4), consider a sequence of n (m − 1)’s and (m − 1)n −1’s

counted by
{

n
(m−1)n

}
m−1

. It must be the case that the last element in this

sequence is −1. (If not, then one of the subsequence sums would have

to be negative, which is contradictory.) Hence, the subsequence preceding

this final −1 will also satisfy the property that all of its subsequence sums

are positive. Therefore, this preceding subsequence will be enumerated by{
n

(m−1)n−1

}
m−1

. In more general terms, it is clear that the last m−1 elements

of our sequence of n (m − 1)’s and n(m − 1) −1’s must be −1. Thus, the

same argument as that above can be used to prove the full set of equalities

in (4).

We include here a table comparable to Table 1 above in the case of m = 3.

n\r 0 1 2 3 4 5 6 7 8
0 1
1 1 1 1
2 1 2 3 3 3
3 1 3 6 9 12 12 12
4 1 4 10 19 31 43 55 55 55
5 1 5 15 34 65 108 163 218 273
6 1 6 21 55 120 228 391 609 882
7 1 7 28 83 203 431 822 1431 2313
8 1 8 36 119 322 753 1575 3006 5319

Table 2: Values for
{

n
r

}
2

Our goal is to present various results involving
{

n
r

}
m−1

, including an

interpretation of the sequences counted by
{

n
r

}
m−1

which truly generalizes
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the proof that

Cn =
1

n + 1

(
2n

n

)
which appears in [2]. In particular, we pay special attention to the case when

r = (m − 1)n (the largest allowable value of r for fixed m) and prove that

{
n

(m − 1)n

}
m−1

=
1

(m − 1)n + 1

(
mn

n

)
. (5)

This is a clear generalization of Cn. Indeed, these quantities also enjoy a

rich history and background, and can be found in the works of Raney [6] and

others. See [5] and [7] for additional discussion.

The Main Generalization of the Catalan Numbers

We now consider sequences of the form

a1, a2, . . . , an+r

containing n (m− 1)’s and r −1’s for a fixed value of m larger than 1. Note

that the total number of such sequences (with no restrictions) is
(

n+r
n

)
. We

wish to count, in a natural way, the number of such sequences which satisfy

a1 + a2 + . . . + aj ≥ 0 (6)

for each j = 1, 2, . . . , n + r. We will do so by subtracting from
(

n+r
n

)
the

number of sequences
〈

n
r

〉
m−1

which violate (6) above for at least one value
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of j. (These sequences will be referred to affectionately as “bad.”) This use

of inclusion/exclusion is, in essence, the approach taken in [2] to prove the

formula for Cn, although the proof in [2] is not directly generalizable.

For simplicity, we first focus our attention on the case r = (m− 1)n. We

pick up the more general case in the next section.

On our way to a closed form for
{

n
(m−1)n

}
m−1

, we first state a lemma.

Lemma 1.

n∑
k=0

w

w + dk

(
p − bk

n − k

)(
q + bk

k

)
=

(
p + q

n

)

+
n∑

k=1

(
p + q − k

n − k

)
(wb − qd)(wb − (q − 1)d) · · · (wb − (q − k + 1)d)

(w + d)(w + 2d) · · · (w + kd)

for all values of p, q, w, n, b and d for which the terms are defined.

Proof. This result is proven by H. Gould and J. Kaucky in [4].

Using Lemma 1, we can prove the following corollary.

Corollary 1. For all m ≥ 2,

n−1∑
k=0

1

(m − 1)k + 1

(
mk

k

)(
mn − mk − 1

n − k

)
= (m − 1)

(
mn

n − 1

)
.

Proof. We apply Lemma 1 with b = m, p = mn − 1, q = 0, w = 1 and

d = m − 1. Then we have, following [4],

n∑
k=0

1

1 + (m − 1)k

(
mn − 1 − mk

n − k

)(
mk

k

)
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=

(
mn − 1

n

)
+

n∑
k=1

(
mn − 1 − k

n − k

)
=

n∑
k=0

(
mn − 1 − k

n − k

)
=

n∑
k=0

(−1)n−k

(
−mn + k + 1 + n − k − 1

n − k

)
using (3.4), [4]

=
n∑

k=0

(−1)n−k

(
−(m − 1)n

n − k

)

=
0∑

j=n

(−1)j

(
−(m − 1)n

j

)
using j = n − k

=
n∑

j=0

(−1)j

(
−(m − 1)n

j

)
=

(
n + (m − 1)n

n

)
using identity 1.49, [3]

=

(
mn

n

)
.

Thus, we know that

n−1∑
k=0

1

(m − 1)k + 1

(
mk

k

)(
m(n − k) − 1

n − k

)
=

(
mn

n

)
− 1

(m − 1)n + 1

(
mn

n

)(
−1

0

)
=

(
mn

n

)
− 1

(m − 1)n + 1

(
mn

n

)
· 1

=
(m − 1)n

(m − 1)n + 1

(
mn

n

)
= (m − 1)

(
mn

n − 1

)
.
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We are now in position to state the main result for
{

n
(m−1)n

}
m−1

.

Theorem 1. For all n ≥ 1 and m ≥ 2,{
n

(m − 1)n

}
m−1

=
1

(m − 1)n + 1

(
mn

n

)
.

Proof. We will prove this theorem by induction on n. First, we recall that{
n

(m − 1)n

}
m−1

=

(
n + (m − 1)n

n

)
−

〈
n

(m − 1)n

〉
m−1

and we focus on the “bad” sequences counted by
〈

n
(m−1)n

〉
m−1

. Let

a = 〈a1, a2, . . . , amn〉

be a bad sequence of n (m − 1)’s and (m − 1)n −1’s and let j be the first

subscript for which the partial sum Sj =
∑j

i=1 ai < 0. (The existence of j is

guaranteed since a is a bad sequence.) Then Sj = −1 and aj = −1 (by the

minimality of j) so that Sj−1 = 0. Therefore j ≡ 1 (mod m).

We now set k = j−1
m

. Then there are k (m − 1)’s in the partial sequence

aj−1 = 〈a1, . . . , aj−1〉, so aj−1 is a “good” sequence with k (m − 1)’s and

(m − 1)k − 1’s by the minimality of k. Moreover, the subsequence

âj = 〈aj+1, aj+2, . . . amn〉

is an arbitrary sequence of (n− k) (m− 1)’s and ((m− 1)(n− k)− 1) − 1’s.

(Remember that aj = −1.) Since there are
{

k
(m−1)k

}
m−1

ways to choose a
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good sequence with k (m− 1)’s and (m− 1)k − 1’s and
(

mn−mk−1
n−k

)
ways to

choose an arbitrary sequence of (n−k) (m−1)’s and ((m−1)(n−k)−1) −1’s,

then the number of bad sequences with n (m−1)’s and (m−1)n −1’s with the

first bad partial sequence having length mk + 1 is
{

k
(m−1)k

}
m−1

(
mn−mk−1

n−k

)
.

Hence 〈
n

(m − 1)n

〉
m−1

=
n−1∑
k=0

{
k

(m − 1)k

}
m−1

(
mn − mk − 1

n − k

)
. (7)

A quick comment is in order regarding the index of summation in (7). Since

j ≡ 1 mod m, the smallest possible value of j is 1 whence k = 0 is the

smallest value of k (since k = j−1
m

). Since the whole sequence has length

mn, the largest value of j is mn − m + 1 and hence the largest value of k is

mn−m+1−1
m

= n − 1.

Now by induction,{
k

(m − 1)k

}
m−1

=
1

(m − 1)k + 1

(
mk

k

)
,

so 〈
n

(m − 1)n

〉
m−1

=
n−1∑
k=0

1

(m − 1)k + 1

(
mk

k

)(
mn − mk − 1

n − k

)
.

Now Corollary 1 can be applied.〈
n

(m − 1)n

〉
m−1

=
n−1∑
k=0

1

(m − 1)k + 1

(
mk

k

)(
mn − mk − 1

n − k

)
= (m − 1)

(
mn

n − 1

)
.
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Our result is now in reach.

{
n

(m − 1)n

}
m−1

=

(
n + (m − 1)n

n

)
−

〈
n

(m − 1)n

〉
m−1

=

(
mn

n

)
− (m − 1)

(
mn

n − 1

)
=

(
mn

n

)
− (m − 1) · n

(mn − n + 1)

(
mn

n

)
=

[
1 − n(m − 1)

mn − n + 1

](
mn

n

)
=

1

(m − 1)n + 1

(
mn

n

)
after simplification.

Therefore, we see that

{
n

(m − 1)n

}
m−1

=
1

(m − 1)n + 1

(
mn

n

)
.

As noted in the introductory section, the values 1
(m−1)n+1

(
mn
n

)
have ap-

peared in the past. However, we are unaware of their interpretation as the

number of sequences described above. Moreover, the proof technique utilized

in Theorem 1 does not seem readily available in the literature.

The General Case

Our initial motivation in this study (in the spirit of Bailey) was to find

a closed formula for
{

n
r

}
m−1

for all r satisfying 1 ≤ r ≤ (m − 1)n. The
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completion of this task has proven elusive. However, we can generalize (7)

above to determine
〈

n
r

〉
m−1

. Then it is clear that

{
n
r

}
m−1

=

(
n + r

n

)
−

〈
n
r

〉
m−1

.

We now look at the generalization of (7).

Theorem 2.

〈
n
r

〉
m−1

=

d r
m−1

e−1∑
k=0

1

(m − 1)k + 1

(
mk

k

)(
n + r − mk − 1

n − k

)
(8)

Proof. The proof of this is essentially the same as that in Theorem 1. The

major difference is that the index of summation must be modified. To deter-

mine the extreme values of k we analyze as before. Since j ≡ 1 mod m, the

smallest possible value of j is 1 whence k = 0 is the smallest value of k (since

k = j−1
m

). Now, any “good” subsequence of a has km terms and so will have

(km − k) −1’s in it. But if km − k ≥ r, there are no −1’s left to make the

sequence bad. That is, we may not have k ≥ r
m−1

, so the maximum value

of k is b r
m−1

c if r is not an integer multiple of m − 1, and r
m−1

− 1 if r is an

integer multiple of m − 1. A more efficient way of expressing the maximum

value of k is as d r
m−1

e − 1.

Unfortunately, we have been unable to determine a closed formula for (8).

However, we note that this is still a useful insight, at least in a computational
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sense. Indeed, if one wants to determine (for example)
{

100
44

}
4
, with m = 5,

n = 100, and r = 44, then (8) provides a very feasible way to calculate〈
100
44

〉
4
, so that {

100
44

}
4

=

(
144

44

)
−

〈
100
44

〉
4

.

In this example, the sum in (8) only contains d44
4
e or 11 terms, each of which

is simply a weighted product of two binomial coefficients. This is much

quicker than calculating
{

100
44

}
4

from the recurrences (3) and (4).

Concluding Thoughts and Questions

While we have not fully reached our initial goal, we are satisfied with the

results obtained, especially since the approach seems quite novel. We now

share two thoughts in closing.

First, we covet a closed formula for the sum in (8). It is unclear how

to accomplish this task. Second, we note a fairly interesting residual result

from Bailey’s work. Bailey proved that{
n
r

}
1

=
(n + 1 − r)(n + r)!

(n + 1)n!r!
=

n + 1 − r

n + 1

(
n + r

n

)
.

Thus, it is clear that〈
n
r

〉
1

=

(
n + r

r

)
− n + 1 − r

n + 1

(
n + r

r

)
=

(
1 − n + 1 − r

n + 1

) (
n + r

r

)
13



=
r

n + 1

(
n + r

r

)
.

By (8) above, we then have

r−1∑
k=0

1

k + 1

(
2k

k

)(
n + r − 2k − 1

n − k

)
=

r

n + 1

(
n + r

r

)
.

The proof of this summation result does not appear to be within reach via

known tools such as Lemma 1, and we have been unable to prove this identity

directly. A direct combinatorial proof of this result would be nice to see. If

found, such a proof might allow us to better see a closed formula for the sum

in (8).
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