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Abstract

In 1994, the following infinite family of congruences was conjectured
for the partition function cφ2(n) which counts the number of 2–colored
Frobenius partitions of n:

For all n ≥ 0 and α ≥ 1,

cφ2(5
αn + λα) ≡ 0 (mod 5α),

where λα is the least positive reciprocal of 12 modulo 5α.
In this paper, the first four cases of this family are proven.

1 Background and Introduction

In his 1984 Memoir of the American Mathematical Society, George E. An-
drews [2] introduced two families of partition functions, φk(m) and cφk(m),
which he called generalized Frobenius partition functions. In this note, we will
focus our attention on one of these functions, namely cφ2(m), which denotes the
number of generalized Frobenius partitions of m with 2 colors. In [2], Andrews
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gives the generating function for cφ2(m):∑
m≥0

cφ2(m)qm =
(q2; q4)∞

(q; q2)4∞(q4; q4)∞
, (1)

where (a; b)∞ = (1− a)(1− ab)(1− ab2)(1− ab3) . . . . Andrews then proves the
following: For all n ≥ 0,

cφ2(5n + 3) ≡ 0 (mod 5), and (2)
cφ2(2n + 1) ≡ 0 (mod 4). (3)

More recently, Sellers [9] conjectured the following infinite family of congru-
ences satisfied by cφ2:

Conjecture 1. For all n ≥ 0 and α ≥ 1,

cφ2(5αn + λα) ≡ 0 (mod 5α), (4)

where λα is the least positive reciprocal of 12 modulo 5α.

The case α = 1 is (2) mentioned above.
The reader will note the similarity of this conjecture to the well–known

family of congruences for p(m), the classical partition function of m: For all
n ≥ 0,

p(5αn + γα) ≡ 0 (mod 5α), (5)

where γα is the least positive reciprocal of 24 modulo 5α. (For two different
proofs of (5), see [1] and [6].) Unfortunately, (4) has proven to be much more
difficult to prove than (5).

The goal of this note is to prove the following:

Theorem 1. For all n ≥ 0 and α = 1, 2, 3, 4,

cφ2(5αn + λα) ≡ 0 (mod 5α), (6)

where λα is the least positive reciprocal of 12 modulo 5α.

In order to prove this theorem, we implement a finitization technique de-
veloped recently. (See, for example, [3].) In essence, we prove that, for fixed
α,

cφ2(5αn + λα) ≡ 0 (mod 5α) for all n

if and only if

cφ2(5αn + λα) ≡ 0 (mod 5α) for all n ≤ C(α)

where C(α) is an explicit constant dependent on α. We will then compute all
values of cφ2 needed to utilize the equivalence above. The development of C(α)
will require the theory of modular forms as outlined below.
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2 Determination of C(α)

In this section, we use the theory of modular forms to determine the constant
C(α). We will do so by constructing a modular form whose Fourier coefficients
inherit the congruence properties modulo 5α of cφ2 in the desired arithmetic
progression. Then, thanks to a theorem of Sturm [10], we will be able to provide
explicitly a constant C(α) such that if a congruence for the Fourier coefficients
of our modular form (or equivalently, for cφ2) holds for all n ≤ C(α), the
congruence must hold for all n.

For a general introduction to the theory of modular forms, see [7]. For an
exposition focused on the results we use below, see [3].

We now state Sturm’s Theorem.

Theorem 2 (Sturm). If f(z) =
∑∞

n=0 a(n)qn and g(z) =
∑∞

n=0 b(n)qn are
holomorphic modular forms of weight k with respect to some congruence sub-
group Γ of SL2(Z) with integer coefficients, then f(z) ≡ g(z) (mod l) where l
is prime if and only if

Ordl(f(z)− g(z)) >
k

12
[SL2(Z) : Γ].

where Ordl(F (q)) := min{n | A(n) 6≡ 0 (mod l)}.

Sturm’s Theorem also holds when the prime l is replaced by 5α, or in fact
by any positive integer. Thus, when we let g(z) = 0, Sturm’s Theorem allows
us to determine when the coefficients a(n) of a holomorphic modular form have
the property that a(n) ≡ 0 (mod 5α) for all n.

We are now ready to state the main result needed to prove Theorem 1 above.

Theorem 3. Suppose α is a positive integer, and let

C(α) := 6(b− 1 + 4ε · 5α−1)5α−1 −
⌈

b

12

⌉
,

where b = b(α) is the smallest integer greater than 4·5α−2 with b ≡ 5α (mod 12),
ε = ε(α) = 1 if α is odd, and ε = ε(α) = 2 if α is even. Then

cφ2(5αn + λα) ≡ 0 (mod 5α) for all n

if and only if

cφ2(5αn + λα) ≡ 0 (mod 5α) for all n ≤ C(α),

where λα is the least positive reciprocal of 12 modulo 5α.

Proof. Let

f(z) =
η5(2z)

η4(z)η2(4z)
ηb(2 · 5αz)

(
η5(z)
η(5z)

)ε·5α−1

=
∞∑

n=0

a(n)qn,
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where η(z) is the Dedekind eta-function, defined by η(z) = q1/24(q; q)∞, q =
e2πiz, b = b(α) is the smallest integer greater than 4·5α−2 with b ≡ 5α (mod 12),
ε = ε(α) = 1 if α is odd, and ε = ε(α) = 2 if α is even.

Using results from [4, Theorems 3 and 5] on the properties of η−products,
we find that f(z) is a holomorphic modular form of weight b−1

2 + 2ε · 5α−1 and
character χ0, the trivial character, with respect to Γ0(16 · 5α).

Notice that (
η5(z)
η(5z)

)ε·5α−1

= 1 + 5α
∞∑

n=1

h(n)qn,

where the h(n) are integers, and thus the Fourier coefficients of f(z) are con-
gruent to the Fourier coefficients of

η5(2z)
η4(z)η2(4z)

ηb(2 · 5αz)

modulo 5α.
Next, note that in terms of eta-functions,∑

n≥0

cφ2(n)qn = q1/12 η5(2z)
η4(z)η2(4z)

.

Thus, if we let

q−
2b·5α

24 ηb(2 · 5αz) =
∞∑

n=0

d(2 · 5αn)q2·5αn,

then

a

(
5αn + λα +

2b · 5α − 2
24

)
≡

∞∑
m=0

d(2·5αm)cφ2(5αn+λα−2·5αm) (mod 5α).

Since d(0) = 1, this becomes

a

(
5αn + λα +

2b · 5α − 2
24

)
≡ cφ2(5αn + λα)

+
∞∑

m=1

d(2 · 5αm)cφ2(5αn + λα − 2 · 5αm) (mod 5α).

By induction, it is easy to see that cφ2(5αn + λα) ≡ 0 (mod 5α) for all n ≤

C(α) if and only if a

(
5αn + λα +

2b · 5α − 2
24

)
≡ 0 (mod 5α) for all n ≤ C(α).

Hence, we also have that cφ2(5αn + λα) ≡ 0 (mod 5α) for all n if and only if

a

(
5αn + λα +

2b · 5α − 2
24

)
≡ 0 (mod 5α) for all n.
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Now notice that λα +
2b · 5α − 2

24
≡ 0 (mod 5α) by hypothesis, so let us

consider

f1(z) = f(z)|T5α =
∞∑

n=0

a(5αn)qn,

which is also a holomorphic modular form of weight
b− 1

2
+ 2ε · 5α−1 and char-

acter χ0 with respect to Γ0(16 ·5α). (See [7, pages 153-175] for a full explanation
of the action of the Hecke operators Tp.) We find by Sturm’s Theorem that
a(5αn) ≡ 0 (mod 5α) for all n if and only if a(5αn) ≡ 0 (mod 5α) for all

n ≤
( b−1

2 + 2ε · 5α−1)(16 · 5α)
12

∏
p|10

(
1 +

1
p

)
. Therefore cφ2(5αn + λα) ≡ 0

(mod 5α) for all n if and only if the congruence holds for all n ≤ C(α).

For certain values of α, it is not difficult to make modest improvements to
Theorem 1. In the case α = 4, this modest improvement will bring C(α) more
comfortably within the realm of computational feasibility.

Theorem 4. Let
C(4) := 198745.

Then
cφ2(625n + 573) ≡ 0 (mod 625) for all n

if and only if

cφ2(625n + 573) ≡ 0 (mod 625) for all n ≤ C(4).

Proof. Let

f(z) =
η5(2z)

η4(z)η2(4z)
η44(625z)η7(1250z)η10(2500z)

(
η5(z)
η(5z)

)250

=
∞∑

n=0

a(n)qn,

where q = e2πiz. We find that f(z) is a holomorphic modular form of weight
530 and character χ0, the trivial character, with respect to Γ0(2500).

Notice that (
η5(z)
η(5z)

)250

= 1 + 625
∞∑

n=1

h(n)qn,

where the h(n) are integers, and thus the Fourier coefficients of f(z) are con-
gruent to the Fourier coefficients of

η5(2z)
η4(z)η2(4z)

η44(625z)η7(1250z)η10(2500z)

modulo 625.
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Recalling that ∑
n≥0

cφ2(n)qn = q1/12 η5(2z)
η4(z)η2(4z)

,

if we let

q−
61250

24 η44(625z)η7(1250z)η10(2500z) =
∞∑

n=0

d(625n)q625n,

then

a

(
625n + 573 +

61250− 2
24

)
≡

∞∑
m=0

d(625m)cφ2(625n+573−625m) (mod 625).

Since d(0) = 1, this becomes

a (625n + 573 + 2552) ≡ cφ2(625n + 573)

+
∞∑

m=1

d(625m)cφ2(625n + 573− 625m) (mod 625).

By induction, it is easy to see that cφ2(625n + 573) ≡ 0 (mod 625) for all
n ≤ C(4) if and only if a (625n + 573 + 2552) ≡ 0 (mod 625) for all n ≤ C(4).
Hence, we also have that cφ2(625n + 573) ≡ 0 (mod 625) for all n if and only if
a(625n + 573 + 2552) ≡ 0 (mod 625) for all n.

Now notice that 573 + 2552 ≡ 0 (mod 625), so let us consider

f1(z) = f(z)|T625 =
∞∑

n=0

a(625n)qn,

which is also a holomorphic modular form of weight 530 and character χ0 with
respect to Γ0(2500). We find by Sturm’s Theorem that a(625n) ≡ 0 (mod 625)

for all n if and only if a(625n) ≡ 0 (mod 625) for all n ≤ (530)(2500)
12

∏
p|10

(
1 +

1
p

)
.

Therefore cφ2(625n+573) ≡ 0 (mod 625) for all n if and only if the congruence
holds for all n ≤ C(4).

3 Calculating the Needed Values of cφ2

From the above, we can prove the congruences desired for all n after calculating
the first M values of cφ2, for any M > 5αC(α)+λα. We calculate the necessary
terms using recurrences.

The recurrences needed for cφ2(m) are easily developed. Recurrences are
suitable for calculating the values of cφ2(m) for “small” m. This, of course,
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is the historical approach to the calculation of partition function values. For
example, this was the technique used by P. A. MacMahon to compute the first
200 values of p(m) [5, Table IV]. This same table was used by Ramanujan [8]
in conjecturing several of the congruences in (5) above.

Theorem 5.∑
n≥0

cφ2(n)qn

[∑
n∈Z

(−1)nqn2

]
=

∑
n≥0

p(n)q2n

[∑
n∈Z

qn2

]

Proof. From Jacobi’s Triple Product Identity [1, Theorem 2.8], we see that∑
n∈Z

(−1)nqn2
= (q2; q2)∞(q; q2)2∞ and

∑
n∈Z

qn2
=

(q2; q2)5∞
(q; q)2∞(q4; q4)2∞

.

Also, since ∑
n≥0

p(n)qn =
1

(q; q)∞
,

it is clear that ∑
n≥0

p(n)q2n =
1

(q2; q2)∞
.

Then∑
n≥0

cφ2(n)qn

[∑
n∈Z

(−1)nqn2

]
=

(q2; q4)∞
(q; q2)4∞(q4; q4)∞

· (q2; q2)∞(q; q2)2∞

=
(q2; q2)2∞

(q; q2)2∞(q4; q4)2∞

=
1

(q2; q2)∞
· (q2; q2)5∞
(q; q)2∞(q4; q4)2∞

=

∑
n≥0

p(n)q2n

[∑
n∈Z

qn2

]

From this theorem, we have the following recurrences:

cφ2(2k) = p(k) + 2
∑
m≥1

(−1)m+1cφ2(2k −m2) + 2
∑
m≥1

p(k − 2m2)

cφ2(2k + 1) = 2
∑
m≥1

(−1)m+1cφ2(2k + 1−m2) + 2
∑
m≥0

p(k − 2m(m + 1))
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Since p(n) satisfies p(n) = p(n− 1)+ p(n− 2)− p(n− 5)− p(n− 7)+ . . . , where
the values in question are the pentagonal numbers, the above recurrences can
easily be implemented to calculate several values of cφ2.

Using these recurrences, we have calculated the necessary 124, 216, 198 values
of cφ2 on a Linux PC with 768MB of RAM and a 600Mhz Pentium III processor.
The calculations, all performed modulo 625, were completed in approximately
147 hours of computing time.

With these calculations complete and the congruences checked modulo 625,
Theorem 1 has been proven.

4 Closing Remarks

While it would be nice to prove additional cases of (4) using this technique, it
is clear that C(α) grows too rapidly to make such an approach feasible. For
example, the proof of the α = 5 case of (4) would require the calculation of
C(5) = 11279958 values of cφ2 in the arithmetic progression 55n + λ5. Hence,
we would have to calculate the first 3.5× 1010 values of cφ2 (approximately).

Certainly, a proof of Conjecture 1 via modular forms or generating function
manipulations is still desired. This was originally requested in [9], and we renew
that request here, given the new computational information that is now known
about this partition function and the fact that Theorem 1 is proven.
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