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Abstract

The restricted binary partition function bk(n) enumerates the num-
ber of ways to represent n as n = 2a0 + 2a1 + · · ·+ 2aj with 0 ≤ a0 ≤
a1 ≤ . . . ≤ aj < k. We study the question of how large a power of
2 divides the difference bk(2r+2n) − bk−2(2rn) for fixed k ≥ 3, r ≥ 1,
and all n ≥ 1.

1



1 Introduction

Let b(n) denote the number of partitions of the positive integer n into powers

of 2. That is, b(n) is the number of ways to represent n as

n = 2a0 + 2a1 + · · · with ai ∈ Z and 0 ≤ a0 ≤ a1 ≤ . . .

We call b(n) the binary partition function.

Churchhouse [2] conjectured that

b(2r+2n)− b(2rn) ≡ 0 (mod 2b3r/2c+2) for r ≥ 1.(1)

Moreover, he conjectured that this result is exact ; i.e. no higher power of

2 divides the left hand side if n is odd. Churchhouse’s conjecture was first

proven in [6]. Subsequently, others produced proofs, including Gupta [3], [4],

[5], and Andrews [1].

In [7] we proved a number of congruences for the restricted m-ary parti-

tion function with similar consequences for the ordinary (unrestricted) m-ary

partition function. However, in the binary case m = 2, these congruences

reduce to mere trivialities. The object of this paper is to establish some

alternative results for the restricted binary partition function bk(n), which is

the number of ways to represent n as

n = 2a0 + 2a1 + · · ·+ 2aj with 0 ≤ a0 ≤ a1 ≤ . . . ≤ aj < k.

We also have that bk(n) equals the number of representations of n of the form

n = c0 + c12 + c22
2 + · · · with 0 ≤ ci < 2k.

We now present the two theorems which we prove below.

Theorem 1 For 1 ≤ r ≤ k − 2 we have

bk(2
r+2n)− bk−2(2

rn) ≡ 0 (mod 2b3r/2c+2).(2)
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Notice that for a given n, b(n) = bk(n) for sufficiently large k, so that

Theorem 1 implies (1).

Although not exact, Theorem 1 is “best possible” in the following sense:

For 1 ≤ r ≤ k − 3, no higher power of 2 divides the left hand side of (2) if

n ≡ 1 (mod 2k−r−1). Furthermore, for r = k − 2, we have

bk(2
kn)− bk−2(2

k−2n) ≡ 2b3k/2c−1n(n+ 1)

2
(mod 2b3k/2c), k ≥ 3.(3)

If we replace n by 2n in (3), we get an exact result, which is the case t = 1

of the next theorem.

Theorem 2 For k ≥ 3 and t ≥ 1, we have

bk(2
k+tn)− bk−2(2

k+t−2n) ≡ 0 (mod 2b3k/2c+t−2).

Moreover, this result is exact.

We prove Theorems 1 and 2 by considering various aspects of the gen-

erating function for bk(n). Theorem 1 follows from Lemma 1 below, while

Theorem 2 follows from Lemma 3. Indeed, Lemmata 1 and 3 give somewhat

stronger results than those stated in Theorems 1 and 2, but the stronger

results are also more complicated.

2 Auxiliaries

In the following we write π(a) for the largest integer π such that 2π divides

the nonzero integer a. Notice that

π(a) < π(c) implies π(±a± c) = π(a),

π(a) = π(c) implies π(±a± c) > π(a).

We regard π(0) > c for any integer c as valid.

All power series in this paper will be elements of Z[[q]], the ring of formal

power series in q with coefficients in Z. We define a Z-linear operator

U : Z[[q]] −→ Z[[q]]
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via

U
∑
n

a(n)qn =
∑
n

a(2n)qn.

Notice that if f(q), g(q) ∈ Z[[q]], then

U(f(q)g(q2)) = (Uf(q))g(q).(4)

Moreover, if f(q) =
∑

n a(n)qn ∈ Z[[q]], g(q) =
∑

n c(n)qn ∈ Z[[q]], and M is

a positive integer, then we have

f(q) ≡ g(q) (mod M) (in Z[[q]])

if and only if, for all n,

a(n) ≡ c(n) (mod M) (in Z).

In the work below we shall use the following identity for binomial coeffi-

cients: (
2n+ r − 1

r

)
=

r∑
i=dr/2e

(−1)r−i22i−r
(

i

r − i

)(
n+ i− 1

i

)
(5)

The truth of this relation follows by expanding both sides of the identity

1

(1− q)2n
=

1

(1− q(2− q))n
,

and comparing the coefficient of qr on each side of the equation.

We now begin to develop the machinery needed to prove our two theo-

rems. First, let

hi = hi(q) =
q

(1− q)i+1
, i ≥ 0.

Then

hi =
∞∑
n=1

(
n+ i− 1

i

)
qn,(6)

so that

Uhr =
∞∑
n=1

(
2n+ r − 1

r

)
qn.
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It follows from (5) and (6) that

Uhr =
r∑

i=dr/2e

(−1)r−i22i−r
(

i

r − i

)
hi(7)

for r ≥ 0.

Next, we recursively define Kr = Kr(q) by

K2 = 23h2 and Ki+1 = U
( 1

1− q
Ki

)
(8)

for i ≥ 2. We have the following lemma regarding Kr.

Lemma 1 For 1 ≤ i ≤ r − 1, there exist γr(i) ∈ Z such that

Kr =
r−1∑
i=1

γr(i)hi+1.(9)

Moreover,

π(γr(i)) ≥
⌊3r + i2

2

⌋
,

where equality holds if and only if i = 1 or r + i is odd.

Note. In the following we set γr(i) = 0 if i ≥ r.

Proof. We use induction on r. The lemma is true for r = 2 thanks to (8).

Suppose that the lemma is true for r replaced by r− 1 for some r ≥ 3. Then

we have

Kr−1 =
r−2∑
i=1

γr−1(i)hi+1,(10)

and

π(γr−1(i)) ≥
⌊3(r − 1) + i2

2

⌋
,(11)
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where equality holds if and only if i = 1 or r+ i is even (and 1 ≤ i ≤ r− 2).

By (10), (8), and (7), we find

Kr =
r−2∑
j=1

γr−1(j)Uhj+2

=
r−2∑
j=1

γr−1(j)

j+2∑
i=dj/2e+1

(−1)i+j22i−j−2

(
i

j + 2− i

)
hi

=
r∑
i=2

min(r−2,2i−2)∑
j=max(1,i−2)

(−1)i+j22i−j−2

(
i

j + 2− i

)
γr−1(j)hi

=
r−1∑
i=1

min(r−2,2i)∑
j=max(1,i−1)

(−1)i+j+122i−j
(

i+ 1

j + 1− i

)
γr−1(j)hi+1.

Thus (9) holds with

γr(i) =

min(r−2,2i)∑
j=max(1,i−1)

(−1)i+j+122i−j
(

i+ 1

j + 1− i

)
γr−1(j),(12)

so that all values γr(i) are integers. Now we have

γr(1) = −22γr−1(1) + γr−1(2),

where

π(22γr−1(1)) = 2 +
⌊3(r − 1) + 1

2

⌋
=
⌊3r + 2

2

⌋
.

If r is odd, then

π(22γr−1(1)) =
⌊3r + 1

2

⌋
,

while

π(γr−1(2)) >
⌊3(r − 1) + 22

2

⌋
=
⌊3r + 1

2

⌋
,

so that

π(γr(1)) =
⌊3r + 1

2

⌋
.(13)

If r is even, then

π(22γr−1(1)) =
⌊3r + 1

2

⌋
+ 1,
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while

π(γr−1(2)) =
⌊3(r − 1) + 22

2

⌋
=
⌊3r + 1

2

⌋
,

and (13) holds in this case also.

Next, let 2 ≤ i ≤ r − 1. By (12), we then have

γr(i) = 2i+1γr−1(i− 1)− 2i(i+ 1)γr−1(i) + ∆1,(14)

where, by (11),

π(∆1) ≥ min
j≥i+1

(2i− j +
⌊3(r − 1) + j2

2

⌋
) ≥

⌊3r + i2

2

⌋
+ 2.(15)

Now consider i = 2. We have

π(23γr−1(1)) = 3 +
⌊3(r − 1) + 1

2

⌋
=
⌊3r + 22

2

⌋
.

If r is odd, then

π(22 · 3γr−1(2)) > 2 +
⌊3(r − 1) + 22

2

⌋
>
⌊3r + 22

2

⌋
,

so that, by (14) and (15),

π(γr(2)) =
⌊3r + 22

2

⌋
.

If r is even, then

π(22 · 3γr−1(2)) = 2 +
⌊3(r − 1) + 22

2

⌋
=
⌊3r + 22

2

⌋
,

and it follows that

π(γr(2)) >
⌊3r + 22

2

⌋
.

Finally, if 3 ≤ i ≤ r − 1, then

π(2i(i+ 1)γr−1(i)) ≥ i+
⌊3(r − 1) + i2

2

⌋
>
⌊3r + i2

2

⌋
,

so that, by (11), (14), and (15),

π(γr(i)) ≥
⌊3r + i2

2

⌋
with equality if and only if r + i is odd. This implies the result stated in

Lemma 1.
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3 Proof of Theorem 1

With bk(0) = 1, the generating function for bk(n) is

Bk(q) =
∞∑
n=0

bk(n)qn =
k−1∏
i=0

1

1− q2i , k ≥ 0,

where, in particular, B0(q) = 1. Notice that, for k ≥ 1,

Bk(q) =
1

1− q
Bk−1(q

2).(16)

Thanks to (4), we have for k ≥ 2,

UBk(q) = (U
1

1− q
)Bk−1(q)

=
1

1− q
Bk−1(q)

=
1

(1− q)2
Bk−2(q

2) from (16)

=
∞∑
n=0

(n+ 1)qnBk−2(q
2).

Furthermore,

U2Bk(q) =
∞∑
n=0

(2n+ 1)qnBk−2(q),

so that, for k ≥ 3,

U2Bk(q)−Bk−2(q) =
∞∑
n=1

(2n+ 1)qnBk−2(q)

= (2h1 + h0)Bk−2(q)

= (2h2 + h1)Bk−3(q
2).

By (7), we now have

U3Bk(q)− UBk−2(q) = (2Uh2 + Uh1)Bk−3(q)

= 23h2Bk−3(q)

= K2Bk−3(q).
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Moreover, since

U(KiBk−i−1(q)) = U(
1

1− q
KiBk−i−2(q

2)) = Ki+1Bk−i−2(q),

induction on r gives

U r+2Bk(q)− U rBk−2(q) = Kr+1Bk−r−2(q)

for 1 ≤ r ≤ k − 2. Thus we have
∞∑
n=1

(bk(2
r+2n)− bk−2(2

rn))qn = Kr+1Bk−r−2(q)(17)

for 1 ≤ r ≤ k − 2. Theorem 1 now follows from Lemma 1.

Next we turn to the remarks following the statement of Theorem 1. For

r ≥ 1, we have, by Lemma 1,

Kr+1(q) ≡ 2b3r/2c+2h2(q) (mod 2b3r/2c+3).(18)

If we now put r = k − 2 in (17), (3) follows by (18) and (6).

Let
∞∑
n=1

dr(n)qn = h2(q)Bk−r−2(q).(19)

Since

Bk(q) ≡
k−1∏
i=0

1

(1− q)2i ≡
1

(1− q)2k−1
(mod 2),

we then have, for 1 ≤ r ≤ k − 3,

∞∑
n=0

dr(n+ 1)qn ≡ 1

(1− q)2k−r−2+2

≡ 1

(1− q2)2k−r−3+1
(mod 2),

so that
∞∑
n=0

dr(2n+ 1)qn ≡ 1

(1− q)2k−r−3+1

≡ 1

1− q
· 1

1− q2k−r−3 (mod 2).

9



Repeated application of (4) now gives

∞∑
n=0

dr(2
k−r−2n+ 1)qn ≡ 1

(1− q)2
≡ 1

1− q2
(mod 2),

so that

dr(2
k−r−1n+ 1) ≡ 1 (mod 2),(20)

for 1 ≤ r ≤ k− 3. From (17)–(20) it now follows that, for 1 ≤ r ≤ k− 3, the

left hand side of (2) is not divisible by 2b3r/2c+3 if n ≡ 1 (mod 2k−r−1).

4 Proof of Theorem 2

By putting r = k − 2 in (17), we see that

∞∑
n=1

(bk(2
k+tn)− bk−2(2

k+t−2n)qn = U tKk−1(q).(21)

With the goal of proving Theorem 2, we prove the following two lemmas

regarding U tKr(q). We first consider the t = 1 case, UKr(q), as a basis case.

Lemma 2 For r ≥ 2, there exist δr,1(i) ∈ Z such that

UKr =
r∑
i=1

δr,1(i)hi,(22)

where

π(δr,1(1)) =
⌊3r + 1

2

⌋
,(23)

and

π(δr,1(i)) ≥
⌊3r + i2 + 1

2

⌋
for i = 2, . . . , r.(24)

Moreover, (24) holds with equality if and only if i = 2 or r + i is even.
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Proof. By (9) and (7), we have

UKr =
r−1∑
j=1

γr(j)Uhj+1

=
r−1∑
j=1

γr(j)

j+1∑
i=d j+1

2
e

(−1)j+1−i22i−j−1

(
i

j + 1− i

)
hi

=
r∑
i=1

min(r−1,2i−1)∑
j=max(1,i−1)

(−1)i+j+122i−j−1

(
i

j + 1− i

)
γr(j)hi.

Thus (22) holds with

δr,1(i) =

min(r−1,2i−1)∑
j=max(1,i−1)

(−1)i+j+122i−j−1

(
i

j + 1− i

)
γr(j),

and all values δr,1(i) are integers. Moreover, δr,1(1) = −γr(1), so by Lemma 1,

(23) holds.

For 2 ≤ i ≤ r, we have

δr,1(i) = 2iγr(i− 1)− 2i−1iγr(i) + ∆2,(25)

where

π(∆2) ≥ min
j≥i+1

(2i− j − 1 +
⌊3r + j2

2

⌋
) ≥

⌊3r + i2 + 1

2

⌋
+ 2.(26)

Note that

π(2iγr(i− 1)) ≥ i+
⌊3r + (i− 1)2

2

⌋
=
⌊3r + i2 + 1

2

⌋
(27)

with equality if and only if i = 2 or r + i is even. Furthermore,

π(2i−1iγr(i)) ≥ i− 1 + π(i) +
⌊3r + i2

2

⌋
>
⌊3r + i2 + 1

2

⌋
,(28)

where we look separately at the cases i = 2 and i ≥ 3. Combining (25)–(28)

completes the proof of Lemma 2.
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Lemma 3 For r ≥ 2 and t ≥ 1, there exist δr,t(i) ∈ Z such that

U tKr =
r∑
i=1

δr,t(i)hi,(29)

where

π(δr,t(1)) =
⌊3r + 1

2

⌋
+ t− 1,(30)

and

π(δr,t(i)) ≥
⌊3r + i2 + 1

2

⌋
+ i(t− 1) for i = 2, . . . , r.(31)

Moreover, (31) holds with equality if and only if i = 2 or r + i is even.

Proof. We use induction on t. By Lemma 2, Lemma 3 is true for t = 1.

Next, suppose that Lemma 3 is true for t replaced by t− 1 for some t ≥ 2.

Using (7), we get

U tKr =
r∑
j=1

δr,t−1(j)Uhj

=
r∑
j=1

δr,t−1(j)

j∑
i=dj/2e

(−1)j−i22i−j
(

i

j − i

)
hi

=
r∑
i=1

min(r,2i)∑
j=i

(−1)i+j22i−j
(

i

j − i

)
δr,t−1(j)hi,

so that (29) holds with

δr,t(i) =

min(r,2i)∑
j=i

(−1)i+j22i−j
(

i

j − i

)
δr,t−1(j),

and all values δr,t(i) are integers.

Now we have

δr,t(1) = 2δr,t−1(1)− δr,t−1(2).

By the induction assumption, we have

π(2δr,t−1(1)) = 1 +
⌊3r + 1

2

⌋
+ t− 2,
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and

π(δr,t−1(2)) =
⌊3r + 22 + 1

2

⌋
+ 2(t− 2) >

⌊3r + 1

2

⌋
+ t− 1.

Thus, (30) follows.

For 2 ≤ i ≤ r, we have

δr,t(i) = 2iδr,t−1(i) + ∆3,(32)

where

π(∆3) ≥ min
j≥i+1

(2i− j +
⌊3r + j2 + 1

2

⌋
+ j(t− 2)),

so that

π(∆3) >
⌊3r + i2 + 1

2

⌋
+ i(t− 1).(33)

Moreover,

π(2iδr,t−1(i)) ≥
⌊3r + i2 + 1

2

⌋
+ i(t− 1),(34)

with equality if and only if i = 2 or r + i is even. Combining (32)–(34)

completes the proof of Lemma 3.

We are now in a position to prove Theorem 2. For k ≥ 3 and t ≥ 1, we

have by Lemma 3 and (6),

U tKk−1 ≡ δk−1,t(1)h1 ≡ δk−1,t(1)
∞∑
n=1

nqn (mod 2b3k/2c+2t−1).

In particular, by (30) and (21),

bk(2
k+tn)− bk−2(2

k+t−2n) ≡ 2b3k/2c+t−2n (mod 2b3k/2c+t−1),

and the proof of Theorem 2 is complete.
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