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Abstract

We consider the partition function b′
p(n), which counts the num-

ber of partitions of the integer n into distinct parts with no part

divisible by the prime p. We prove the following: Let p be a prime

greater than 3 and let r be an integer between 1 and p−1, inclusively,

such that 24r + 1 is a quadratic nonresidue modulo p. Then, for all

nonnegative integers n, b′
p(pn + r) ≡ 0 (mod 2).

1 Introduction

A partition λ of the nonnegative integer n is a nonincreasing sequence of
nonnegative integers λ1, λ2, . . . , λr with λ1 + λ2 + . . .+ λr = n. Each value
λi, 1 ≤ i ≤ r, is called a part of the partition. The number of partitions of
n is counted by the partition function p(n).

A partition λ1, λ2, . . . , λr of n is p-regular if no part λi, 1 ≤ i ≤ r, is
divisible by p. The function which enumerates the p-regular partitions of n
is often denoted bp(n). These functions have been the focus of much study
in recent years [1], [4], [5]. The function bp(n) is of particular interest for
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prime p, as it yields the number of irreducible p-modular representations of
the symmetric group Sn [7].

The function which counts those p-regular partitions of n which con-
sist of distinct parts will be denoted b′p(n) in this note. Such functions
have appeared in a variety of recent works. For example, parity results for
b′2(n), the number of partitions of n into distinct odd parts, were found
by Hirschhorn [6]. Moreover, the function b′5(n) was studied by Andrews,
Bessenrodt, and Olsson [3] as it relates to representation theory.

2 Main Results

Our main goal here is to prove the following parity result for b′p by elemen-
tary means:

Theorem 2.1. Let p be a prime greater than 3 and let r be an integer
between 1 and p−1, inclusively, such that 24r+1 is a quadratic nonresidue
modulo p. Then, for all nonnegative integers n, b′p(pn+ r) ≡ 0 (mod 2).

Before proving Theorem 2.1, we mention two propositions. The proofs
of these can be found in [2, Chapter 1].

Proposition 2.2. The generating function for p(n) is given by∑
n≥0

p(n)qn =
1

(q; q)∞

where (a; b)∞ = (1− a)(1− ab)(1− ab2)(1− ab3) . . .

Proposition 2.3 (Euler’s Pentagonal Number Theorem).

(q; q)∞ =
∑
m∈Z

(−1)mq
3
2 m2− 1

2 m

With these two tools in hand, we turn to the proof of Theorem 2.1.

Proof. Note that the generating function for b′p(n) is given by

∑
n≥0

b′p(n)qn =
(−q; q)∞

(−qp; qp)∞
.
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Then we see that∑
n≥0

b′p(n)qn = (−q; q)∞
(qp; qp)∞

(q2p; q2p)∞

≡ (q; q)∞
(qp; qp)∞
(qp; qp)2∞

(mod 2) since 1− q ≡ 1 + q (mod 2)

= (q; q)∞
1

(qp; qp)∞

= (q; q)∞
∑
k≥0

p(k)qpk

thanks to Proposition 2.2. But this implies∑
n≥0

b′p(n)qn ≡
∑
m∈Z

q
3
2 m2− 1

2 m
∑
k≥0

p(k)qpk (mod 2) (1)

by Proposition 2.3.
Now we assume

pn+ r =
3
2
m2 − 1

2
m+ pk

for some integers m and k. Then we know

r ≡ 3
2
m2 − 1

2
m (mod p).

Hence,

24r + 1 ≡ 36m2 − 12m+ 1 (mod p)

≡ (6m− 1)2 (mod p).

But this contradicts the assumption that 24r+ 1 is a quadratic nonresidue
modulo p. Therefore, pn + r can never be represented as 3

2m
2 − 1

2m + pk

for integers m and k. Thus, by (1), we know

b′p(pn+ r) ≡ 0 (mod 2).

We note that, for each prime p > 3, Theorem 2.1 guarantees p−1
2 dif-

ferent congruences modulo 2 for the function b′p, which is a very satisfying
result.
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