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Abstract. The goal of this paper is to prove new congruences involving 2–colored and 3–

colored generalized Frobenius partitions of n which extend the work of George Andrews and

Louis Kolitsch.

Section 1. Introduction.

Generalized Frobenius partitions have been the focus of study for many mathematicians
in the last few years. In 1984, George Andrews [1] introduced these objects, known simply
as F–partitions, and two partition functions related to them. In particular, he introduced
cφm (n), the number of F–partitions of n with m colors, and proved that

cφm (n) ≡ 0 (mod m2) (1)

if m is prime and m does not divide n.

In an effort to extend Andrews’ work, Louis Kolitsch [2, 3] introduced a new partition
function, cφm (n), which denotes the number of F–partitions of n with m colors whose
order is m under cyclic permutation of the m colors. Kolitsch went on to prove a result
involving cφm (n) which is quite similar to (1) above. Namely, he proved that, for all n ≥ 1
and for any m ≥ 2,

cφm (n) ≡ 0 (mod m2). (2)
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Based on the work of Kolitsch [3], this author has been able to slightly extend (2) above.
In a short note [5], the following congruences were proven to hold for all n ≥ 1:

cφ5(5n) ≡ 0 (mod 53),

cφ7(7n) ≡ 0 (mod 73), and

cφ11(11n) ≡ 0 (mod 113).

(3)

The goal of this paper is to prove two new congruences similar to (3). Specifically, we
will prove the following:

Theorem 1. For all n ≥ 1,

cφ2 (2n) ≡ 0 (mod 23), and (4)

cφ3 (3n) ≡ 0 (mod 34). (5)

The proof of Theorem 1 will only involve elementary techniques, relying on two well–
known results of Jacobi. The first of the two results is Jacobi’s Triple Product Identity,
which states that

∞∑
n=−∞

znqn2
=

∞∏
n=0

(
1− q2n+2

) (
1 + zq2n+1

) (
1 + z−1q2n+1

)
. (6)

The second is a result which will be used in Section 3 to prove (5) above. It is the following:

(q; q)3∞ =
∞∑

n=0

(−1)n (2n + 1) q
n2+n

2 , (7)

where we have used the notation

(a; b)∞ =
∞∏

n=1

(
1− abn−1

)
.

Section 2. The Congruence Involving cφ2.

We begin this section with a theorem concerning the generating function for cφ2 (n).

Theorem 2.
∞∑

n=0

cφ2 (n) qn =
4q

(
q16; q16

)2

∞

(q; q)2∞ (q8; q8)∞
.

Proof. We know from Kolitsch [3] that

∞∑
n=0

cφ2 (n) qn =
2

(q; q)2∞

∞∑
n=−∞

q(2n−1)2 .
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Hence, we see that
∞∑

n=0

cφ2 (n) qn =
2q

(q; q)2∞

∞∑
n=−∞

q4n2−4n

=
2q

(q; q)2∞

∞∏
n=1

(
1− q8n

) (
1 + q8n−8

) (
1 + q8n

)
by (6) above

=
4q

(q; q)2∞

(
q8; q8

)
∞

(
−q8; q8

)2

∞

=
4q

(
q16; q16

)2

∞

(q; q)2∞ (q8; q8)∞
. �

The next theorem gives a generating function for cφ2 (2n), which will be used to prove
(4) above.

Theorem 3.
∞∑

n=0

cφ2 (2n) qn =
8q

(
q8; q8

)2

∞

(q; q)4∞ (q4; q4)∞

∞∑
n=−∞

q4n2+5n+1
∞∑

n=−∞
q4n2+n.

Proof. To prove this, we note that

∞∑
n=0

cφ2 (2n) q2n =
1
2

[ ∞∑
n=0

cφ2 (n) qn +
∞∑

n=0

cφ2 (n) (−q)n

]
.

Hence, we know that

∞∑
n=0

cφ2 (2n) q2n =
2q

(
q16; q16

)2

∞

(q; q)2∞ (q8; q8)∞
−

2q
(
q16; q16

)2

∞

(−q;−q)2∞ (q8; q8)∞

=
2q

(
q16; q16

)2

∞
(q8; q8)∞

[
1

(q; q)2∞
− 1

(−q;−q)2∞

]

=
2q

(
q16; q16

)2

∞

(q2; q2)2∞ (q8; q8)∞

[
1

(q; q2)2∞
− 1

(−q; q2)2∞

]

=
2q

(
q16; q16

)2

∞

(q2; q2)4∞ (q8; q8)∞

[(
q4; q4

)2

∞

(
−q; q2

)2

∞ −
(
q4; q4

)2

∞

(
q; q2

)2

∞

]
.

Now we focus on the difference above. Notice that it is a difference of two squares and
hence can be factored as[(

q4; q4
)
∞

(
−q; q2

)
∞ −

(
q4; q4

)
∞

(
q; q2

)
∞

] [(
q4; q4

)
∞

(
−q; q2

)
∞ +

(
q4; q4

)
∞

(
q; q2

)
∞

]
.
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Moreover, from Jacobi’s Triple Product Identity,

(
q4; q4

)
∞

(
−q; q2

)
∞ =

∞∑
n=−∞

q2n2+n and

(
q4; q4

)
∞

(
q; q2

)
∞ =

∞∑
n=−∞

(−1)n
q2n2+n.

Thus, (
q4; q4

)
∞

(
−q; q2

)
∞ −

(
q4; q4

)
∞

(
q; q2

)
∞ = 2

∑
n odd

q2n2+n and

(
q4; q4

)
∞

(
−q; q2

)
∞ +

(
q4; q4

)
∞

(
q; q2

)
∞ = 2

∑
n even

q2n2+n.

Therefore,

∞∑
n=0

cφ2 (2n) q2n =
8q

(
q16; q16

)2

∞

(q2; q2)4∞ (q8; q8)∞

∑
n odd

q2n2+n
∑

n even

q2n2+n

=
8q

(
q16; q16

)2

∞

(q2; q2)4∞ (q8; q8)∞

∞∑
n=−∞

q8n2+10n+3
∞∑

n=−∞
q8n2+2n

=
8q2

(
q16; q16

)2

∞

(q2; q2)4∞ (q8; q8)∞

∞∑
n=−∞

q8n2+10n+2
∞∑

n=−∞
q8n2+2n.

Making the replacement q2 → q yields the desired result. �

It is now obvious from Theorem 3 that, for all n ≥ 1,

cφ2 (2n) ≡ 0 (mod 23),

which proves (4) above.

Section 3. The Congruence Involving cφ3.

We now want to prove the second congruence noted in Theorem 1. We first note the
following result, due to Kolitsch [4], which gives the generating function for cφ3 (n).

Theorem 4.
∞∑

n=0

cφ3 (n) qn =
9q

(
q9; q9

)3

∞

(q; q)3∞ (q3; q3)∞
.

Now we use an approach quite similar to that used above. Namely, if ω = e2πi/3, then

∞∑
n=0

cφ3 (3n) q3n =
1
3

[ ∞∑
n=0

cφ3 (n) qn +
∞∑

n=0

cφ3 (n) (ωq)n +
∞∑

n=0

cφ3 (n)
(
ω2q

)n

]
.
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Hence, we have

∞∑
n=0

cφ3 (3n) q3n

=
3q

(
q9; q9

)3

∞
(q3; q3)∞

[
1

(q; q)3∞
+

ω

(ωq;ωq)3∞
+

ω2

(ω2q;ω2q)3∞

]

=
3q

(
q9; q9

)3

∞
(q3; q3)∞

[
(ωq;ωq)3∞

(
ω2q;ω2q

)3

∞ + ω (q; q)3∞
(
ω2q;ω2q

)3

∞ + ω2 (q; q)3∞ (ωq;ωq)3∞
(q; q)3∞ (ωq;ωq)3∞ (ω2q;ω2q)3∞

]
.

Now we need to study the sum in brackets above. First, we note that

(q; q)3∞ (ωq;ωq)3∞
(
ω2q;ω2q

)3

∞ =

(
q3; q3

)12

∞

(q9; q9)3∞
.

(This follows from a straightforward calculation.) Next, we recall from (7) above that

(q; q)3∞ =
∞∑

n=0

(−1)n (2n + 1) q
n2+n

2 ,

(ωq;ωq)3∞ =
∞∑

n=0

(−1)n (2n + 1) ω−n2−nq
n2+n

2 , and

(
ω2q;ω2q

)3

∞ =
∞∑

n=0

(−1)n (2n + 1) ωn2+nq
n2+n

2 .

Therefore,

(ωq;ωq)3∞
(
ω2q;ω2q

)3

∞ + ω (q; q)3∞
(
ω2q;ω2q

)3

∞ + ω2 (q; q)3∞ (ωq;ωq)3∞

=
∞∑

m=0

∞∑
n=0

(−1)m+n (2m + 1) (2n + 1) q
m2+m

2 + n2+n
2 Ω

where

Ω = ω−m2−m+n2+n + ωn2+n+1 + ω−m2−m−1.

We now note that many of the terms in this double sum cancel, due to the behavior of Ω
and the fact that the sum is symmetric in m and n. This can be seen by taking m and n

modulo 3 and calculating Ω. We show these calculations in the table below.
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m (mod 3) n (mod 3) Ω

0 0 0
0 1 1 + 2ω2

0 2 0

1 0 1 + 2ω
1 1 3
1 2 1 + 2ω

2 0 0
2 1 1 + 2ω2

2 2 0

Hence, the only contribution occurs when m ≡ 1 (mod 3) and n ≡ 1 (mod 3), and in this
case Ω = 3. Therefore,

(ωq;ωq)3∞
(
ω2q;ω2q

)3

∞ + ω (q; q)3∞
(
ω2q;ω2q

)3

∞ + ω2 (q; q)3∞ (ωq;ωq)3∞

= 3
∑

m,n≥0
m≡1 (mod 3)
n≡1 (mod 3)

(−1)m+n (2m + 1) (2n + 1) q
m2+m

2 + n2+n
2 .

Combining all of the above remarks, we have the following:

Theorem 5.

∞∑
n=0

cφ3 (3n) q3n =
9q

(
q9; q9

)6

∞

(q3; q3)13∞

∑
m,n≥0

m≡1 (mod 3)
n≡1 (mod 3)

(−1)m+n (2m + 1) (2n + 1) q
m2+m

2 + n2+n
2 .

Now we note that Theorem 5 implies congruence (5) above. This is easily seen once we
realize that, if m ≡ 1 (mod 3), then 2m + 1 ≡ 0 (mod 3). Therefore, cφ3 (3n) is divisible
by 81, which is the required result.

Section 4. Final Remarks.

We have now proven that

cφm (mn) ≡ 0 (mod m3)

for m = 2, 3, 5, 7, and 11. One question that naturally arises is whether congruences of
this form occur for larger primes such as m = 13 or 17, or for composite values of m. One
realistic problem with exploring this is that finding the values for cφm (n) for large m is not
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an easy task. These values grow extremely quickly and, consequently, hinder investigation.
One step in answering the above question would be to find generating function identities
for cφm (n) for larger primes m similar to Theorems 3 and 5 above.
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