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Abstract. The goal of this paper is to prove new recurrences involving 2–colored and 3–colored generalized
Frobenius partitions of n similar to the classical recurrence for the partition function p(n).

Section 1. Introduction.

For many years, recurrences for partition functions have been widely used to compute the values of the
functions in a straightforward manner. The classical example of a partition function recurrence involves the
function p(n):

p(n) =
∑
m6=0

(−1)m+1p

(
n− 1

2
m(3m− 1)

)
. (1.1)

The proof of this result relies heavily on Euler’s Pentagonal Number Theorem. (See Andrews [1], Chapter
1, for a complete discussion of this result.)

The goal of this paper is to prove five new recurrences similar to (1.1) involving 2–colored and 3–colored
generalized Frobenius partitions, or F–partitions. Namely, we will prove that

cφ2 (2n) =
∑
m6=0

(−1)m+1cφ2

(
2n−m2

)
, (1.2)

cφ2 (2n + 1) =

∑
m6=0

(−1)m+1cφ2

(
(2n + 1)−m2

)+ 4
∑
k≥0

p(n− 2k2 − 2k). (1.3)

cφ3 (3n) =
∑
m≥1

(−1)m+1(2m + 1)cφ3

(
3n−

(
1
2
m2 +

1
2
m

))
, and (1.4)

cφ3 (3n + 1) =

∑
m≥1

(−1)m+1(2m + 1)cφ3

(
3n + 1−

(
1
2
m2 +

1
2
m

))+ 9a3(n). (1.5)

cφ3 (3n + 2) =
∑
m≥1

(−1)m+1(2m + 1)cφ3

(
3n + 2−

(
1
2
m2 +

1
2
m

))
(1.6)
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with the convention that cφm (n) = 0 for n ≤ 0 and m = 2 or 3. Here we define cφm(n) as the number
of F–partitions of n using m colors [2]. Then cφm (n) is the number of F–partitions of n using m colors
whose order under cyclic permutation of the colors is m. (See [4] and [6] for more on this family of partition
functions.) Moreover, a3(n) is defined as the number of 3–cores of n.

Note the similarity of (1.2), (1.4), and (1.6) to (1.1). The main difference between them is the use of
pentagonal numbers in (1.1), squares in (1.2), and triangular numbers in (1.4) and (1.6).

Section 2. One Proof of Recurrence (1.2).

The recurrence (1.2) above will be proven as a corollary of the following key theorem:

Theorem 2.1.

∑
n≥1

cφ2 (2n) q2n

(∑
m∈Z

q4m2

)
=

∑
n≥0

cφ2 (2n + 1) q2n+1

(∑
m∈Z

q(2m+1)2

)
. (2.1)

Proof. The most important tool that will be required in the proof of this theorem is Jacobi’s Triple Product
Identity:

∞∑
n=−∞

znqn2
=
∏
n≥0

(
1− q2n+2

) (
1 + zq2n+1

) (
1 + z−1q2n+1

)
(2.2)

Two special cases of (2.2) are given by the following:

∞∑
n=−∞

q4n2
=
∑

n even

qn2
= (q8; q8)∞(−q4; q8)2∞ (2.3)

and

∞∑
n=−∞

q(2n+1)2 =
∑

n odd

qn2
= q(q8; q8)∞(−q8; q8)∞(−q0; q8)∞

= 2q(q8; q8)∞(−q8; q8)2∞

=
2q(q16; q16)2∞

(q8; q8)∞
(2.4)

where the notation (a; b)∞ is defined by

(a; b)∞ =
∞∏

n=1

(1− abn−1).

From Andrews [2] we see that

∑
n≥0

cφ2 (n) qn =
(q2; q4)∞

(q; q2)4∞(q4; q4)∞
.
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Next, since cφ2 (n) = cφ2(n)− p(n/2), we have

∑
n≥0

cφ2 (n) qn =
(q2; q4)∞

(q; q2)4∞(q4; q4)∞
− 1

(q2; q2)∞

=
[
(q2; q4)2∞
(q; q2)4∞

− 1
]

1
(q2; q2)∞

=
[
(−q; q2)2∞ − (q; q2)2∞

(q; q2)2∞(q2; q2)∞

]
(q2; q2)∞
(q2; q2)∞

=
1

(q; q)2∞

[ ∞∑
n=−∞

qn2
−

∞∑
n=−∞

(−1)nqn2

]
by (2.2)

=
2

(q; q)2∞

∑
n odd

qn2

=
4q(q16; q16)2∞

(q; q)2∞(q8; q8)∞
by (2.4).

Now we can develop the generating functions for cφ2 (2n) and cφ2 (2n + 1).

∑
n≥1

cφ2 (2n) q2n =
1
2

∑
n≥0

cφ2 (n) qn +
∑
n≥0

cφ2 (n) (−q)n


=

2q(q16; q16)2∞
(q2; q2)2∞(q8; q8)∞

[
1

(q; q2)2∞
− 1

(−q; q2)2∞

]
=

2q(q16; q16)2∞
(q2; q2)3∞(q8; q8)∞(q2; q4)2∞

[
(q2; q2)∞(−q; q2)2∞ − (q2; q2)∞(q; q2)2∞

]
=

2q(q16; q16)2∞
(q2; q2)3∞(q8; q8)∞(q2; q4)2∞

(
2
∑

n odd

qn2

)
by (2.2)

=
2q(q16; q16)2∞(q4; q4)2∞

(q2; q2)5∞(q8; q8)∞

[
4q(q8; q8)∞(−q8; q8)2∞

]
=

8q2(q16; q16)2∞(q4; q8)2∞(q8; q8)2∞
(q2; q2)5∞(q8; q16)2∞

=
8q2(q16; q16)2∞(q8; q8)2∞

(q2; q2)5∞(−q4; q8)2∞
. (2.5)
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Also,

∑
n≥0

cφ2 (2n + 1)q2n+1

=
1
2

∑
n≥0

cφ2 (n) qn −
∑
n≥0

cφ2 (n) (−q)n


=

2q(q16; q16)2∞
(q2; q2)3∞(q8; q8)∞(q2; q4)2∞

[
(q2; q2)∞(−q; q2)2∞ + (q2; q2)∞(q; q2)2∞

]
=

2q(q16; q16)2∞
(q2; q2)3∞(q8; q8)∞(q2; q4)2∞

(
2
∑

n even

qn2

)
by (2.2)

=
4q(q16; q16)2∞(−q4; q8)2∞(q8; q8)∞

(q2; q2)3∞(q2; q4)2∞(q8; q8)∞
by (2.3)

=
4q(q16; q16)2∞(q8; q8)2∞(q8; q16)2∞

(q2; q2)3∞(q2; q4)2∞(q4; q8)2∞(q8; q8)2∞

=
4q(q8; q8)4∞
(q2; q2)5∞

. (2.6)

Multiplying (2.4) by (2.6) and (2.3) by (2.5) we see that∑
n≥1

cφ2 (2n) q2n

(∑
m∈Z

q4m2

)
=

∑
n≥0

cφ2 (2n + 1) q2n+1

(∑
m∈Z

q(2m+1)2

)

since both sides equal
8q2(q16; q16)2∞(q8; q8)3∞

(q2; q2)5∞
. �

Given Theorem 2.1, we can now prove the desired recurrence:

Theorem 2.2. For all n ≥ 1,

cφ2 (2n) =
∑
m6=0

(−1)m+1cφ2

(
2n−m2

)
.

Proof. Theorem 2.1 shows us that

(cφ2(2)q2 + cφ2(4)q4 + cφ2(6)q6 + . . . )×
(
1 + 2q4 + 2q16 + 2q36 + 2q64 + . . .

)
=(

cφ2(1)q + cφ2(3)q3 + cφ2(5)q5 + . . .
)
×
(
2q + 2q9 + 2q25 + 2q49 + 2q81 + . . .

)
.

Comparing the coefficients of q2t on either side of this equality yields

cφ2(2t) + 2cφ2(2t− 4) + 2cφ2(2t− 16) + 2cφ2(2t− 36) + 2cφ2(2t− 64) + · · · =

2cφ2(2t− 1) + 2cφ2(2t− 9) + 2cφ2(2t− 25) + 2cφ2(2t− 49) + 2cφ2(2t− 81) + . . .

Moving everything on the left–hand side over to the right–hand side (except for cφ2(2t)) yields the result of
the theorem. �
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Section 3. A Shorter Approach.

Note that (1.2) can also be proven in the following way. Consider

F (q) :=
∑
n≥1

f(n)qn =

∑
n≥1

cφ2(n)qn

(∑
n∈Z

(−1)nqn2

)

=
[

4q(q16; q16)2∞
(q; q)2∞(q8; q8)∞

] [
(q2; q2)∞(q; q2)2∞

]
=

4q(q16; q16)2∞
(q8; q8)∞(q2; q2)∞

.

This shows that F (q) is an odd function in q, which means f(2n) = 0 for all n ≥ 1. This implies (1.2). We
can also prove (1.3) using F (q).

Given that ∑
n≥0

a2(n)qn =
(q2; q2)2∞
(q; q)∞

and ∑
n≥0

p(n)qn =
1

(q; q)∞
,

we know

F (q) = 4

∑
n≥0

a2(n)q8n

∑
n≥0

p(n)q2n+1

 .

Since

a2(n) =
{

1, if n is a triangular number,
0, otherwise,

we see that f(2N + 1) is

4
∑
k≥0

p

(
N − 4

(
1
2
(k2 + k)

))
.

Using the same type of argument as above, we then have

cφ2 (2n + 1) =

2
∑
m6=0

(−1)m+1cφ2

(
(2n + 1)−m2

)+ 4
∑
k≥0

p(n− 2k2 − 2k).

This is (1.3).

Section 4. The Recurrences for cφ3.

Recurrences (1.4)–(1.6) can be attacked in a similar manner. Consider

G(q) :=
∑
n≥1

g(n)qn =

∑
n≥1

cφ3(n)qn

( ∞∑
n=0

(−1)n (2n + 1) q
n2+n

2

)
.

From [5] we know that ∑
n≥1

cφ3(n)qn =
9q(q9; q9)3∞

(q; q)3∞(q3; q3)∞

and from Jacobi we have
∞∑

n=0

(−1)n (2n + 1) q
n2+n

2 = (q; q)3∞.
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Therefore,

G(q) =
[

9q(q9; q9)3∞
(q; q)3∞(q3; q3)∞

]
(q; q)3∞

=
9q(q9; q9)3∞
(q3; q3)∞

,

which has nonzero power series coefficients only for powers of q of the form q3n+1. Thus, g(3n) and g(3n−1)
both equal zero for all n ≥ 1, and these facts imply (1.4) and (1.6) respectively.

Moreover, since ∑
n≥0

a3(n)qn =
(q3; q3)3∞
(q; q)∞

,

we see that
G(q) = 9

∑
n≥0

a3(n)q3n+1.

Thus, we have ∑
n≥1

cφ3(n)qn

( ∞∑
n=0

(−1)n (2n + 1) q
n2+n

2

)
= 9

∑
n≥0

a3(n)q3n+1.

Considering the terms of the form q3n+1 on both sides of this identity yields (1.5).

Section 5. Final Remarks.

Several remarks can be made in closing. First of all, note that (1.2) can be rewritten as

cφ2 (2n) = 2
∑
m≥1

(−1)m+1cφ2

(
2n−m2

)
. (5.1)

Since it is known from [3] that cφ2(n) ≡ 0 (mod 4) for all n, (5.1) provides a new proof that cφ2(2n) ≡ 0
(mod 8). This congruence was proven in [7].

Also, note that (1.2)–(1.6) now allow us to completely determine the values of cφ2 (n) and cφ3 (n) for all n

using recurrences, as long as recurrences exist for p(n) and a3(n). Indeed, p(n) satisfies one such recurrence
thanks to the Pentagonal Number Theorem [1]. It turns out that a3(n) also satisfies a very nice recurrence,
as seen in the following two results.

Theorem 5.1. If n is not of the form (3k2 + 3k)/2, then

a3(n) = a3(n− 1) + a3(n− 2)− a3(n− 5)− a3(n− 7) + a3(n− 12) . . .

Note that this is the same recurrence that is satisfied by p(n) for all n.

Proof. The generating function for a3(n) is given by

∑
n≥0

a3(n)qn =
(q3; q3)3∞
(q; q)∞

.

Multiplication by (q; q)∞ yields the quantity (q3; q3)3∞ which is equal to

∞∑
n=0

(−1)n (2n + 1) q(3n2+3n)/2.
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Since

(q; q)∞ =
∞∑

n=−∞
(−1)nq(3n2+n)/2,

we see that ( ∞∑
n=−∞

(−1)nq(3n2+n)/2

)∑
n≥0

a3(n)qn

 =
∞∑

n=0

(−1)n (2n + 1) q(3n2+3n)/2. (5.2)

Hence, for n 6= (3k2 + 3k)/2, the coefficient of qn on the right–hand side of (5.2) is 0. Thus,

a3(n)− a3(n− 1)− a3(n− 2) + a3(n− 5) + a3(n− 7)− a3(n− 12) . . . = 0.

This is equivalent to the result in Theorem 5.1. �

Now we simply must ask whether a recurrence exists for a3(n) where n = (3k2 + 3k)/2. Indeed, such a
recurrence exists.

Theorem 5.2. If n = (3k2 + 3k)/2, then

a3(n) = [a3(n− 1) + a3(n− 2)− a3(n− 5)− a3(n− 7) + a3(n− 12) . . .] + (−1)k(2k + 1). (5.3)

Proof. Again returning to (5.2) above, we see that comparison of the coefficient of q(3k2+3k)/2 on each side
yields

a3(n)− a3(n− 1)− a3(n− 2) + a3(n− 5) + a3(n− 7)− a3(n− 12) · · · = (−1)k(2k + 1).

Moving all the terms to the right–hand side except for a3(n) yields (5.3). �
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