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ELEMENTARY PROOFS OF INFINITELY

MANY CONGRUENCES FOR 8–CORES

Louis W. Kolitsch and James A. Sellers

October 1, 1997

Abstract. Using a very elementary argument, we prove the congruences

a8(81n + 21) ≡ 0 (mod 2) and

a8(81n + 75) ≡ 0 (mod 2)

where a8(n) is the number of 8–core partitions of n. We also exhibit two infinite families of congruences

modulo 2 for 8–cores.

1. Background

For a positive integer n, we let at(n) be the number of partitions of n whose Ferrers graphs are
void of hooks with lengths that are multiples of t [5]. We say at(n) is the number of t–core partitions,
or t–cores, of n.

A number of congruences for the functions at(n) have been proven recently. For example, the
congruences

a5(5αn− 1) ≡ 0 (mod 5α) and

a7(7αn− 2) ≡ 0 (mod 7α)

are proven in [2] and are clearly related to congruences proven for p(n) by Ramanujan [9]. See, for
example, [1], [6], and [7] for additional work on t–cores.

More recently, attention has been paid to t–cores where t is a power of 2. Congruences for a2(n)
are somewhat trivial since

a2(n) =
{

1, if n is a triangular number
0, otherwise.

(1)

So the first interesting case to study is a4(n). Much has been said about this function, which has
a rich underlying structure. Hirschhorn and Sellers [3], [4] have proven infinitely many congruences
for 4–cores which can be derived from the following arithmetic identities:
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For λ ≥ 1,

a4(32λ+1n + (5× 32λ − 5)/8) = 3λ × a4(3n),

a4(32λ+1n + (13× 32λ − 5)/8) = (2× 3λ − 1)× a4(3n + 1),

a4(32λ+2n + (7× 32λ+1 − 5)/8) = ((3λ+1 − 1)/2)× a4(9n + 2), and

a4(32λ+2n + (23× 32λ+1 − 5)/8) = ((3λ+1 − 1)/2)× a4(9n + 8).

For additional discussion on 4–cores, see [8].

2. Our Results

The goal of this paper is to prove the following facts for 8–cores:

Theorem. For all n ≥ 0,

a8(81n + 21) ≡ 0 (mod 2) and

a8(81n + 75) ≡ 0 (mod 2).

Proof. From [2], the generating function for a8(n) is

∑
n≥0

a8(n)qn =
(q8; q8)8∞
(q; q)∞

where (a; b)∞ = (1− a)(1− ab)(1− ab2)(1− ab3) . . .

Thus,

∑
n≥0

a8(n)qn =
(q8; q8)8∞
(q4; q4)4∞

· (q4; q4)4∞
(q2; q2)2∞

· (q2; q2)2∞
(q; q)∞

.

We write the generating function in this fashion to make use of the fact that

(q2; q2)2∞
(q; q)∞

=
∑
k>0

q(k2−k)/2,

which is the generating function version of (1) above. Therefore,

∑
n≥0

a8(n)q8n+21 ≡

(∑
k>0

q16(2k−1)2

)(∑
k>0

q4(2k−1)2

)(∑
k>0

q(2k−1)2

)
(mod 2).

Since the odd squares modulo 6 are congruent to 1 or 3, we see that a8(27n+21) is congruent (modulo
2) to the number of representations of 216n + 189 as either (6r ± 1)2 + 4(6s± 1)2 + 16(6t± 1)2 or
(6r − 3)2 + 4(6s− 3)2 + 16(6t− 3)2. (No other combination of squares congruent to 1 or 3 modulo
6 will yield an appropriate value.)
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Note also the following:

216n + 189 = (6r ± 1)2 + 4(6s± 1)2 + 16(6t± 1)2

iff 18n + 14 = (3r2 ± r) + 4(3s2 ± s) + 16(3t2 ± t), and (2)

216n + 189 = (6r − 3)2 + (6s− 3)2 + (6t− 3)2

iff 24n + 21 = (2r − 1)2 + 4(2s− 1)2 + 16(2t− 1)2

iff 2n = (3R2 ±R) + 4(3S2 ± S) + 16(3T 2 ± T )

or 2n− 14 = 3(R2 −R) + 12(S2 − S) + 48(T 2 − T ) (3)

Now we recall two well–known facts from the theory of partitions. The first is Euler’s Pentagonal
Number Theorem, which states that

(q; q)∞ =
∞∑

k=−∞

(−1)kq(3k2+k)/2.

The second is a fact due to Jacobi:

(q; q)3∞ =
∑
k≥0

(−1)k(2k + 1)q(k2+k)/2

Clearly, these two imply

(q; q)∞ ≡
∞∑

k=−∞

q(3k2+k)/2 (mod 2) and

(q; q)3∞ ≡
∑
k≥1

qk2−k (mod 2). (4)

Thanks to the reductions (2) and (3) involving 18n + 14 and 2n above, we can now state that
a8(27n + 21) is congruent (modulo 2) to the coefficient of q9n+7 in

(q; q)∞(q4; q4)∞(q16; q16)∞ + q7(q9; q9)∞(q36; q36)∞(q144; q144)∞
+ q70(q27; q27)3∞(q108; q108)3∞(q432; q432)3∞.

Since

(q; q)∞(q4; q4)∞(q16; q16)∞ ≡ (q; q)∞(q; q)4∞(q; q)16∞ (mod 2)

= (q; q)3∞(q; q)6∞(q; q)12∞
≡ (q; q)3∞(q2; q2)3∞(q4; q4)3∞ (mod 2),

we can actually say that a8(27n + 21) is congruent (modulo 2) to the coefficient of q9n+7 in

(q; q)3∞(q2; q2)3∞(q4; q4)3∞ + q7(q9; q9)3∞(q18; q18)3∞(q36; q36)3∞
+ q70(q27; q27)3∞(q108; q108)3∞(q432; q432)3∞.
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Now by using (4) and completing the square we know that a8(27n + 21) is congruent (modulo 2)
to the coefficient of q72n+63 in

(∑
m>0

q4(2m−1)2

)(∑
m>0

q2(2m−1)2

)(∑
m>0

q(2m−1)2

)
+

+

(∑
m>0

q36(2m−1)2

)(∑
m>0

q18(2m−1)2

)(∑
m>0

q9(2m−1)2

)
+ q567(q216; q216)3∞(q864; q864)3∞(q3456; q3456)3∞.

Again considering that odd squares are always congruent to 1 or 3 modulo 6, we determine that
a8(27n + 21) is congruent (modulo 2) to the coefficient of q72n+63 in

(∑
q4(6m±1)2

)(∑
q2(6m±1)2

)(∑
q(6m−3)2

)
+
(∑

q4(6m−3)2
)(∑

q2(6m±1)2
)(∑

q(6m±1)2
)

+
(∑

q4(6m−3)2
)(∑

q2(6m−3)2
)(∑

q(6m−3)2
)

+
(∑

q4(6m−3)2
)(∑

q2(6m−3)2
)(∑

q(6m−3)2
)

+ q567(q216; q216)3∞(q864; q864)3∞(q3456; q3456)3∞.

Using reduction processes similar to those noted in (2) and (3) we see that a8(27n + 21) is
congruent (modulo 2) to the coefficient of q3n+2 in

(q4; q4)∞(q2; q2)∞(q3; q3)3∞ + q(q12; q12)3∞(q2; q2)∞(q; q)∞ + q23(q9; q9)3∞(q36; q36)3∞(q144; q144)3∞,

which is congruent modulo 2 to

(q2; q2)3∞(q3; q3)3∞ + q(q12; q12)3∞(q; q)3∞ + q23(q9; q9)3∞(q36; q36)3∞(q144; q144)3∞. (5)

Once more, we complete the square. Then a8(27n+21) is congruent (modulo 2) to the coefficient
of q24n+21 in

(∑
q2(6m−3)2

)(∑
q3(6m±1)2

)
+
(∑

q2(6m−3)2
)(∑

q3(6m−3)2
)

+
(∑

q12(6m±1)2
)(∑

q(6m−3)2
)

+
(∑

q12(6m−3)2
)(∑

q(6m−3)2
)

+ q189(q72; q72)3∞(q288; q288)3∞(q1152; q1152)3∞.
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One last set of reductions leads to a very nice result. Namely,

∑
n≥0

a8(27n + 21)qn

≡ (q6; q6)3∞(q3; q3)∞ + q(q6; q6)3∞(q9; q9)3∞ + (q12; q12)∞(q3; q3)3∞
+ q4(q36; q36)3∞(q3; q3)3∞ + q7(q3; q3)3∞(q12; q12)3∞(q48; q48)3∞ (mod 2)

≡ q(q6; q6)3∞(q9; q9)3∞ + q4(q36; q36)3∞(q3; q3)3∞ + q7(q3; q3)3∞(q12; q12)3∞(q48; q48)3∞ (mod 2)
(6)

since
(q6; q6)3∞(q3; q3)∞ + (q12; q12)∞(q3; q3)3∞ ≡ 2(q3; q3)7∞ (mod 2).

This is now extremely helpful in proving the congruences in our theorem. We can note that in
all of the terms in this last generating function the power of q is congruent to 1 modulo 3. Thus,
a8(81n + 21) ≡ 0 (mod 2) and a8(81n + 75) ≡ 0 (mod 2). �

We now consider a8(81n + 48), which is congruent to the coefficient of qn in

(q2; q2)3∞(q3; q3)3∞ + q(q12; q12)3∞(q; q)3∞ + q2(q; q)3∞(q4; q4)3∞(q16; q16)3∞ (mod 2),

which is congruent to

(q2; q2)3∞(q3; q3)3∞ + q(q12; q12)3∞(q; q)3∞ +
∑
n≥0

a8(n)qn+2 (mod 2).

Thus, a8(243n + 210) is congruent modulo 2 to the coefficient of q3n+2 in

(q2; q2)3∞(q3; q3)3∞ + q(q12; q12)3∞(q; q)3∞ +
∑
n≥0

a8(n)qn+2.

From (5) and (6) we see that a8(243n + 210) is congruent modulo 2 to the coefficient of qn in

q(q6; q6)3∞(q9; q9)3∞ + q4(q36; q36)3∞(q3; q3)3∞ +
∑
n≥0

a8(3n)qn.

From this we see that a8(729n + 210) ≡ a8(9n) (mod 2) and a8(729n + 696) ≡ a8(9n + 6) (mod 2).
Now a8(729n + 453) is congruent modulo 2 to the coefficient of qn in

(q2; q2)3∞(q3; q3)3∞ + q(q12; q12)3∞(q; q)3∞ +
∑
n≥0

a8(9n + 3)qn.

Thus, a8(2187n + 1911) is congruent to the coefficient of qn in

q(q6; q6)3∞(q9; q9)3∞ + q4(q36; q36)3∞(q3; q3)3∞ +
∑
n≥0

a8(27n + 21)qn.

Hence, a8(6561n+1911) ≡ a8(81n+21) (mod 2) and a8(6561n+6285) ≡ a8(81n+75) (mod 2). In
addition, a8(6561n + 4098) is congruent modulo 2 to the coefficient of qn in

(q2; q2)3∞(q3; q3)3∞ + q(q12; q12)3∞(q; q)3∞ +
∑
n≥0

a8(81n + 48)qn,

which is congruent modulo 2 to
∑

n≥0 a8(n)qn+2. Therefore, a8(6561n+4098) ≡ a8(n−2) (mod 2).
This proves the following theorem:
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Theorem. For all n ≥ 0,

a8(81αn + λα) ≡ 0 (mod 2) and

a8(81αn + βα) ≡ 0 (mod 2)

where λα = (189 · 81α−1 − 21)/8 and βα = (621 · 81α−1 − 21)/8.

3. Final Thought

Because congruences in arithmetic progressions for t–cores appear to become quite sparse as t
increases, it is surprising to find such nice divisibility results. Moreover, it is satisfying to find such
an elementary sieving argument to prove these easily.
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