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Abstract. Recently, Andrews, Dixit and Yee introduced partition functions associated with the Ra-

manujan/Watson mock theta functions ω(q) and ν(q). In this paper, we study arithmetic properties

of the partition functions. Based on one of the results of Andrews, Dixit and Yee, mod 2 congruences
are obtained. In addition, infinite families of mod 4 and mod 8 congruences are presented. Lastly, an

elementary proof of the first explicit examples of congruences for ω(q) given by Waldherr is presented.

1. Introduction

In his last letter to Hardy in 1920, Ramanujan introduced the notion of a mock theta function along
with a number of examples of order 3, 5, and 7. Since then, mock theta functions have been the subject
of intense study.

Recently, the first and fourth authors with A. Dixit found a new partition function pω(n) that is
associated with the third order mock theta function ω(q) [1]:

ω(q) =

∞∑
n=0

q2(n
2+n)

(q; q2)2n+1

,

where

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1).

One of the results in [1] yields a mod 2 congruence of the coefficients of ω(q), which led us to a further
search for congruences. S. Garthwaite and D. Penniston [4] showed that the coefficients of ω(q) satisfy
infinitely many congruences of a similar type to Ramanujan’s partition congruences, and M. Waldherr
[5] found the first explicit examples of congruences, suggested by some computations done by J. Lovejoy.

We define pω(n) by
∞∑
n=1

pω(n)qn =

∞∑
n=1

qn

(1− qn)(qn+1; q)n(q2n+2; q2)∞
,

where (a; q)∞ := limn→∞(a; q)n. From its generating function definition, we see that pω(n) counts the
number of partitions of n in which each odd part is less than twice the smallest part. In [1], it is shown
that

∞∑
n=1

pω(n)qn = qω(q).

The main result of this paper is:

Theorem 1.1. For nonnegative integers n and k,

pw

(
22k+3n+

11 · 22k + 1

3

)
≡ 0 (mod 4),

pw

(
22k+3n+

17 · 22k + 1

3

)
≡ 0 (mod 8),
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pw

(
22k+4n+

38 · 22k + 1

3

)
≡ 0 (mod 4).

In [1], another partition function pν(n) is defined. Namely,

∞∑
n=0

pν(n)qn =

∞∑
n=0

qn(−qn+1; q)n(q2n+2; q)∞.

It is shown that
∞∑
n=0

pν(n)qn = ν(−q),

where ν(q) is a third order mock theta function,

ν(q) =

∞∑
n=0

qn(n+1)

(−q; q2)n+1
.

This mock theta function ν(q) is related to ω(q) as follows [3, p. 62, Equation (26.88)]:

ν(−q) = qω(q2) + (−q2; q2)∞ψ(q2), (1)

where

ψ(q) =
∞∑
n=0

qn(n+1)/2.

By (1), we can derive congruences of pν(n) from pω(n), which will be given in Section 4.
This paper is organized as follows. In Section 2, we present mod 2 congruences of pω(n) and pν(n). In

Section 3, we prove Theorem 1.1. In Section 4, we prove congruences of pν(n). As noted earlier, Waldherr
[5] provided the first explicit congruences for ω(q):

pω(40n+ 28) ≡ 0 (mod 5),

pω(40n+ 36) ≡ 0 (mod 5).

In Section 5, we provide an elementary proof of the above congruences.

2. Mod 2 congruences

We recall the following results from [1]:

∞∑
n=1

qn

(−qn; q)n+1(−q2n+2; q2)∞
=

∞∑
j=0

(−1)jq6j
2+4j+1(1 + q4j+2), (2)

and
∞∑
n=0

qn(qn+1; q)n(q2n+2; q2)∞ =

∞∑
j=0

(−1)jqj(3j+2)(1 + q2j+1). (3)

Let pω,o(n) and pω,e(n) be the number of partitions of n counted by pω(n) into an odd number of
parts and an even number of parts, respectively. Then it follows from (2) that

pω,o(n)− pω,e(n) =

{
(−1)j , if n = 6j2 + 4j + 1 or 6j2 + 8j + 3 for some j ≥ 0,

0, otherwise.

This yields the following obvious result with the recongnition that 6j2 + 8j+ 3 = 6(j+ 1)2− 4(j+ 1) + 1.

Theorem 2.1. We have

pω(n) ≡

{
1 (mod 2), if n = 6j2 + 4j + 1 for some j ∈ Z,
0 (mod 2), otherwise.
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Corollary 2.2. Let p ≥ 5 be prime, and let r be such that 0 ≤ r ≤ p − 1, and (3r − 1)(p + 1)/2 is a
quadratic nonresidue mod p. Then, for all n ≥ 0,

pω(pn+ r) ≡ 0 (mod 2).

Proof. Assume that there exists an integer j such that

pn+ r = 6j2 + 4j + 1.

Then
3(pn+ r)− 1 = 2(3j + 1)2.

This yields
3r − 1 ≡ 2(3j + 1)2 (mod p)

or

(3r − 1)

(
p+ 1

2

)
≡ (3j + 1)2 (mod p).

But, we have chosen r such that (3r−1)
(
p+1
2

)
is a quadratic nonresidue mod p, so it cannot be congruent

to a square. �

Similarly, (3) yields the following mod 2 result.

Theorem 2.3. We have

pν(n) ≡

{
1 (mod 2), if n = 3j2 + 2j for some j ∈ Z,
0 (mod 2), otherwise.

Corollary 2.4. For all n ≥ 0 and r = 2, 3,

pν(4n+ r) ≡ 0 (mod 2).

Proof. If j is even, then 3j2 + 2j ≡ 0 (mod 4). If j is odd, then 3j2 + 2j ≡ 1 (mod 4). So 4n + 2 and
4n+ 3 can never be represented as 3j2 + 2j. �

Corollary 2.5. Let p ≥ 5 be prime, and let r be such that 0 ≤ r ≤ p − 1, and (3r + 1) is a quadratic
nonresidue mod p. Then, for all n ≥ 0,

pν(pn+ r) ≡ 0 (mod 2).

Proof. For some j, let
pn+ r = 3j2 + 2j,

which is equivalent to
3(pn+ r) + 1 = (3j + 1)2,

and this gives
3r + 1 ≡ (3j + 1)2 (mod p).

But, we have chosen r such that 3r + 1 is a quadratic nonresidue mod p, so it cannot be congruent to a
square. �

3. Proof of Theorem 1.1

We start with a formula from page 63 of [6]:

f(q8) + 2qω(q) + 2q3ω(−q4) =
φ(q)φ(q2)2

(q4; q4)2∞
=: F (q), (4)

where f(q) is a mock theta function, and

φ(q) =

∞∑
n=−∞

qn
2

= (−q; q2)2∞(q2; q2)∞,

ψ(q) =

∞∑
n=0

q(
n+1
2 ) =

(q2; q2)∞
(q; q2)∞

.
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First, note that

φ(q) =
(q2; q2)5

(q; q)2∞(q4; q4)2∞
, (5)

ψ(q) =
(q2; q2)2∞
(q; q)∞

. (6)

Also, by Entry 25 (i), (ii), and Entry 25 (v), (vi) in [2, p.40], respectively, we have

φ(q) = φ(q4) + 2qψ(q8), (7)

φ(q)2 = φ(q2)2 + 4qψ(q4)2. (8)

Lemma 3.1. The 4-dissection of F (q) is

F (q) = F0(q4) + qF1(q4) + q2F2(q4) + q3F3(q4),

where

F0(q) =
φ(q)3

(q; q)2∞
, F1(q) =

2φ(q)2ψ(q2)

(q; q)2∞
, F2(q) =

4φ(q)ψ(q2)2

(q; q)2∞
, F3(q) =

8ψ(q2)3

(q; q)2∞
.

Proof. By (7) and (8),

F (q) =
φ(q)φ(q2)2

(q4; q4)2∞

=

(
φ(q4) + 2qψ(q8)

)(
φ(q4)2 + 4q2ψ(q8)2

)
(q4; q4)2∞

=
φ(q4)3 + 2qψ(q8)φ(q4)2 + 4q2φ(q4)ψ(q8)2 + 8q3ψ(q8)3

(q4; q4)2∞
,

from which the result follows. �

The following lemmas can easily be proved by the binomial theorem and induction so we state without
proof.

Lemma 3.2. For any positive integer n,

(1 + x)2
n

≡ (1 + x2)2
n−1

(mod 2n).

Lemma 3.3. For any prime p,

(1 + x)p ≡ (1 + xp) (mod p).

We first prove the case k = 0 in Theorem 3.4 in a separate theorem.

Theorem 3.4. For any nonnegative integer n,

pω(8n+ 4) ≡ 0 (mod 4),

pω(8n+ 6) ≡ 0 (mod 8),

pω(16n+ 13) ≡ 0 (mod 4).

Proof. Examining the left hand side of (4), we see that the only terms producing qn for n 6≡ 0, 3, 7
(mod 8) come from 2qω(q). Consequently, for the first and third congruences in the theorem, if we can
prove that in F (q) the terms for q8n+4 and q16n+13, respectively, have coefficients divisible by 8, we will
be done. Also, for the second congruence, it will be sufficient to show that in F (q), the terms for q8n+6

have coefficients divisible by 16.
For the first congruence, it suffices to prove that the odd powers in F0(q) vanish mod 8, which implies

that the coefficient of q8n+4 in F (q) is divisible by 8. By Lemma 3.1 and (5),

F0(q) =
φ(q)3

(q; q)2∞
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=
(q2; q2)15∞

(q; q)8∞(q4; q4)6∞

≡ (q2; q2)15∞
(q2; q2)4∞(q4; q4)6∞

(mod 8)

=
(q2; q2)11∞
(q4; q4)6∞

,

where the congruence follows from Lemma 3.2. Thus, mod 8, F0(q) is an even function, and returning to
the observations at the beginning of this proof, we see that pw(8n+ 4) is divisible by 4.

We now prove the second congruence, which is equivalent to the statement that the odd powers in
F2(q) vanish mod 16, which implies that the coefficient of q8n+6 in F (q) is divisible by 16. By Lemma 3.1,
(5), and (6),

1

4
F2(q) =

φ(q)ψ(q2)2

(q; q)2∞

=
(q2; q2)3∞(q4; q4)2∞

(q; q)4∞

≡ (q2; q2)3∞(q4; q4)2∞
(q2; q2)2∞

(mod 4)

= (q2; q2)∞(q4; q4)2∞.

By the analysis at the beginning of this proof, we see that pw(8n+ 6) is divisible by 8.
Lastly, for pw(16n+ 13), by looking at the dissection of F (q) in Lemma 3.1, the terms q16n+13 in F (q)

must come from qF1(q4). Next, since 16n + 13 = 4(4n + 3) + 1, if we can prove that the powers of the
form q4n+3 in 1

2F1(q) vanish mod 4, we will be done. By Lemma 3.1, (5), and (6),

1

2
F1(q) =

φ(q)2ψ(q2)

(q; q)2∞

=
(q2; q2)9∞

(q; q)6∞(q4; q4)2∞

≡ (q2; q2)9∞
(q; q)2∞(q2; q2)2∞(q4; q4)2∞

(mod 4)

=
(q2; q2)7∞

(q; q)2∞(q4; q4)2∞

= φ(q)(q2; q2)2∞.

Now, by Lemma 3.2,

(q2; q2)2∞ ≡ (q4; q4)∞ (mod 2),

so

(q2; q2)2∞ = (q4; q4)∞ + 2q2X(q2)

for some even function X(q2). Thus,

1

2
F1(q) ≡

(
φ(q4) + 2qψ(q8)

)(
(q4; q4)∞ + 2q2X(q2)

)
(mod 4)

≡ φ(q4)(q4; q4)∞ + 2qψ(q8)(q4; q4)∞ + 2q2φ(q4)X(q2),

giving the required result. For the first congruence above, (7) is used. �

We now prove Theorem 1.1 by induction on k. For k = 0, the congruences are given in Theorem 3.4.
To prove the congruence for any positive integer k, we consider the following sequence gk defined by

gk = 4gk−1 − 1, (9)
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which has the solution

gk = 22kg0 −
22k − 1

3
.

In particular, for any nonnegative integer n,

gk =


22k+3n+ 11·22k+1

3 , if g0 = 8n+ 4,

22k+3n+ 17·22k+1
3 , if g0 = 8n+ 6,

22k+4n+ 38·22k+1
3 , if g0 = 16n+ 13.

(10)

From (9), we see that gk ≡ 3 (mod 4) for k > 0. Thus, on the left hand side of (4), the coefficient of qgk

comes from 2qω(q) + 2q3ω(−q4). By the definition of pw(n), we have

2qω(q) + 2q3ω(−q4) = 2qω(q)− 2q−1
(
− q4ω(−q4)

)
= 2

( ∞∑
n=1

pw(n)qn −
∞∑
n=1

pw(n)(−1)nq4n−1

)
,

and the coefficient of qgk in 2qω(q) + 2q3ω(−q4) is

2
(
pω(gk)− (−1)gk−1pω(gk−1)

)
.

We first consider the case when g0 = 8n + 4 or 16n + 13. By the induction hypothesis, we know that
pω(gk−1) ≡ 0 (mod 4). Therefore, to show that pω(gk) ≡ 0 (mod 4), it suffices to show that the coefficient
of qgk in F (q) in (4) vanishes mod 8, which is indeed true as seen in F3(q) in Lemma 3.1 since gk ≡ 3
(mod 4).

For the case when g0 = 8n + 6, we know that pω(gk−1) ≡ 0 (mod 8) by the induction hypothesis.
Thus, we have to show that the coefficient of qgk in F (q) in (4) vanishes mod 16. Again, since gk =
4gk−1 − 1 = 4(gk−1 − 1) + 3, it suffices to show that the coefficient of qgk−1−1 in F3(q)/8 vanishes mod
2. By Lemma 3.1 and (6),

1

8
F3(q) =

ψ(q2)3

(q; q)2∞
=

(q4; q4)6∞
(q; q)2∞(q2; q2)3∞

≡ (q4; q4)6∞
(q2; q2)4∞

(mod 2)

≡ (q4; q4)4∞ (mod 2).

Since g0 ≡ 2 and gj ≡ 3 mod 4 for j > 0, gk−1 − 1 6≡ 0 mod 4. Thus the required result follows.

4. Congruences for pν(n)

The formula (1) is the key to the results in this section.

Theorem 4.1. For any nonnegative integer n,

pν(8n+ 6) ≡ 0 (mod 4).

Proof. Note that

(−q2; q2)∞ψ(q2) =
(q4; q4)3∞
(q2; q2)2∞

≡ (q4; q4)3∞(q8; q8)4∞
(q2; q2)2∞(q16; q16)2∞

(mod 4)

= (q8; q8)∞φ(q2)φ(q4)

= (q8; q8)∞
(
φ(q8) + 2q2ψ(q16)

)(
φ(q16) + 2q4ψ(q32)

)
≡ (q8; q8)∞

(
φ(q8)φ(q16) + 2q2φ(q16)ψ(q16) + 2q4φ(q8)ψ(q32)

)
(mod 4),

in which the terms for q8n+6 vanish. This completes the proof. �

Again, by (1), we see that pν(2n − 1) = pω(n). Thus the following congruences immediately follow
from Theorem 1.1.
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Theorem 4.2. For any nonnegative integers n and k,

pv

(
22k+4n+

11 · 22k+1 − 1

3

)
≡ 0 (mod 4),

pv

(
22k+4n+

17 · 22k+1 − 1

3

)
≡ 0 (mod 4),

pv

(
22k+5n+

38 · 22k+1 − 1

3

)
≡ 0 (mod 4).

5. Waldherr’s congruences

In this section, we provide an elementary proof of the first explicit examples of congruences for pω(n).

Theorem 5.1 (Waldherr [5]).

pω(40n+ 28) ≡ 0 (mod 5),

pω(40n+ 36) ≡ 0 (mod 5).

Proof. First note that the terms for q40n+28 and q40n+36 in F (q) in (4) come from 2qω(q) only. Also,
since 40n + 28 = 4(10n + 7) and 40n + 36 = 4(10n + 9), it suffices to show that in F0(q) the terms for
q10n+7 and q10n+9 vanish mod 5.

By (5), (6), and (8), we have

(q2; q2)10∞
(q; q)4∞(q4; q4)4∞

=
(q4; q4)10∞

(q2; q2)4∞(q8; q8)4∞
+ 4q

(q8; q8)4∞
(q4; q4)2∞

,

which is equivalent to

1

(q; q)4∞
=

(q4; q4)14∞
(q2; q2)14∞(q8; q8)4∞

+ 4q
(q4; q4)2∞(q8; q8)4∞

(q2; q2)10∞
,

By Lemma 3.1,

F0(q) =
φ(q)3

(q; q)2∞
=

(q2; q2)15∞
(q; q)8∞(q4; q4)6∞

.

Since 10n+ 7 and 10n+ 9 are odd, we consider odd powers of q only in F0(q), which appear in

8q
(q4; q4)16∞
(q2; q2)24∞

(q2; q2)15∞
(q4; q4)6∞

= 8q
(q4; q4)10∞(q2; q2)∞

(q2; q2)10∞

≡ 8q
(q20; q20)2∞
(q10; q10)2∞

∞∑
n=−∞

(−1)nqn(3n−1) (mod 5),

where the congruence follows from Lemma 3.3 and Euler’s pentagonal number theorem.
Now we can easily check that n(3n− 1) ≡ 0, 2, 4 mod 10, from which it follows that the coefficients of

q10n+7 and q10n+9 are divisible by 5. This completes the proof. �
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