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Abstract

In this work, we consider the function ped(n), the number of partitions of an integer n
wherein the even parts are distinct (and the odd parts are unrestricted). Our goal is to consider
this function from an arithmetical point of view in the spirit of Ramanujan’s congruences for
the unrestricted partition function p(n). We prove a number of results for ped(n) including the
following: For all n > 0,

ped(In+4) =0 (mod 4)
and
ped(In+7)=0 (mod 12).

Indeed, we compute appropriate generating functions from which we deduce these congruences

and find, in particular, the surprising result that

S ped(9n + 7)q" = 19(@%10)5% (0% 6*)% (0% ")
= (0%

We also show that ped(n) is divisible by 6 at least 1/6 of the time.
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1 Introduction
In recent years, the function which enumerates those integer partitions wherein even parts are distinct

(and odd parts are unrestricted) has arisen quite naturally. For example, the generating function
for these partitions appears in the following classic identity of Lebesgue [8]:
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where (a;q)m = ] (1 —agq™) and (a;9)00 = lm (a;q)m.
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As the above equation shows, the number of partitions of n wherein even parts are distinct equals
the number of partitions of n with no parts divisible by 4. These are often referred to as 4-regular
partitions and much has been written about arithmetic properties of such partitions. The reader
interested in work involving regular partitions may wish to see Alladi [I], Andrews [2, Theorem 9],
[3], Dandurand and Penniston [5], Granville and Ono [6], Gordon and Ono [7], Patkowski [9], and
Penniston [10].



Our goal in this work is to consider ped(n), the number of partitions of n wherein the even
parts are distinct, from an arithmetic point of view in the spirit of Ramanujan’s congruences for
the unrestricted partition function p(n). In this vein, we will prove various congruence properties
satisfied by ped(n) as well as a number of explicit results on generating function dissections. In

particular, we will prove that
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from which it is immediate that for n > 0,
ped(9n+4) =0 (mod 4)

and
ped(In +7) =0 (mod 12).

We also deduce that for o > 1 and all n > 0,
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ped (320‘+1n + X8) =0 (mod 6),
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ped <320¢+2n + 9><38> = 0 (mod 6)

and that ped(n) is divisible by 6 at least 1/6 of the time.

In the proofs below, we use nothing deeper than Ramanujan’s 117 summation formula, which as
noted in [4, Theorem 10.5.1], is given as follows: For |¢| < 1 and |b/a| < |z| < 1,
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2 Preliminaries

We shall require several properties of the functions denoted ¢(q) and ¢ (q) by Ramanujan, namely
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The necessary properties are given in the following lemmas. We include proofs for the sake of
completeness.
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Proof. We have
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We shall also need the following results.
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Proof. First,
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Finally,
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If we replace ¢° by ¢, we obtain the required result. O
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With the above lemmas proved, we can now move to the dissections of the generating function

for ped(n) with the goal of proving the desired congruences.



3 Main Results

We shall begin by proving the following theorem which provides our first set of important dissections.

Theorem 3.1.
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again after simplification. Lastly,
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With the above set of dissections complete, we now move to a second set of dissections which

provide the proofs of the desired congruences. The main results are summarized in the following

theorem:
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after simplification. Similarly,

Z ped(9In + 4)q"
n>0
o 4a(q)*b(q) + 16gb(g)*
= ¢(—9)v(—q) a(q _qu( ))
- S (i) o o
= ;()(b((] 7) ( ) — 84b(q)*) +12¢b(q)*)
_ g 0de) TES ’
- o (e )( oo (L))
(@356 (@%¢%) o (g q)(q Q) (q q)(q )(q q)
- (¢ )% 18 (q,tJ)oo

after simplification. Lastly,

n 12a(q)?b(q)?
T;)ped(gn + 7)(] ¢(_q)'¢)(_Q) (a(q)3 — qu(q):g)z
L 0e(=) (40 (6% 0%\
= Py <<q2~q2> <q3;q3>m>
7% q%)% (6% (6% ¢

= 12
(¢:90)%
O
Corollary 3.3. For alln >0,
ped(9n+4) =0 (mod 4),
and ped(n+7)=0 (mod 12).
Proof. These congruences are immediate from Theorem 2.2. O

With these results in hand, we now wish to prove two infinite families of Ramanujan—like con-
gruences modulo 6 satisfied by ped(n). We begin by proving the following:

Theorem 3.4. Fora > 1,
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Proof. From the work above, we have
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where f(a,b) is Ramanujan’s theta—function,

f(aa b) = Z a(n2+n)/2b(n27n)/2.

n=—oo

The mod 2 result now follows by induction on «. Similarly, modulo 3,
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The mod 3 result now follows by induction on «, using the fact that
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Theorem 3.5. For > 1 and alln > 0,
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Proof. The results follow directly from Theorem 3.4, once we observe that 1(q), ¥(—q) and ¢(q)
contain no term in which the power of ¢ is 2 modulo 3, while 1(¢*) contains no term in which the

power of ¢ is 1 or 2 modulo 3. O

Corollary 3.6. For a > 1 and alln > 0,
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Proof. These results are immediate from Theorem 3.5. O



We close with a significant result regarding the density of ped(n) modulo 6.

Theorem 3.7. The function ped(n) is divisible by 6 at least 1/6 of the time.

17 x 32 — 1 19 x 32+ 1
Proof. The arithmetic sequences 9n + 7, 320F1p + — = and 32**2p + — = (for
a > 1), on which ped(-) is 0 modulo 6, do not intersect. These sequences account for
L N B
9 27 81 6
of all positive integers. O
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