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Abstract. For a finite set A of positive integers, we study the partition
function pA(n). This function enumerates the partitions of the positive
integer n into parts in A. We give simple proofs of some known and
unknown identities and congruences for pA(n). For n in a special residue
class, pA(n) is a polynomial in n. We examine these polynomials for
linear factors, and the results are applied to a restricted m-ary partition
function. We extend the domain of pA and prove a reciprocity formula
with supplement. In closing we consider an asymptotic formula for pA(n)
and its refinement.

1. Introduction

Let A be a non-empty set of natural numbers. An (unordered) partition
of a natural number n with parts in A is a sequence p1, p2, . . . , pr of, not
necessarily distinct, elements pi in A, such that

n = p1 + p2 + · · · + pr. (1.1)

The order of the parts pi does not matter. Therefore one often chooses to
consider partitions with decreasing (or increasing) parts only.

Let pA(n) denote the number of partitions (1.1) of n with pi ∈ A. Putting
pA(0) = 1, we can write the generating function F (x) =

∑∞
n=0 pA(n)xn as

F (x) =
∏

a∈A

1

1 − xa
.

In particular, if A = N, the set of natural numbers, then pA(n) = p(n), the
number of unrestricted partitions of n, and the result

∞
∑

n=0

p(n)xn =

∞
∏

i=1

1

1 − xi

was published by Euler in 1748. There is an abundance of literature on
the partition function p(n). Among the main issues studied are divisibility
properties and asymptotics.

In this paper we consider the case where the set A is finite. Let A consist
of the positive integers a0, a1, . . . , ak−1. Then pA(n) is equal to the number
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of solutions (x0, x1, . . . , xk−1) in non-negative integers xi of the equation

n = a0x0 + a1x1 + · · · + ak−1xk−1. (1.2)

From this point of view, pA(n) is defined (and the results below hold) even if
the ai are not all distinct, that is, if A is a finite multiset of natural numbers.
We assume that the numbers in A are relatively prime. This does not imply
any loss of generality.

This paper is organized as follows. In Section 2 we show that pA(n) is
a quasi-polynomial in n of degree k − 1; that is, for n in a fixed residue
class modulo a certain number, pA(n) is a polynomial in n with coefficients
in Q. In Section 3 we show that these polynomials may have (several)
integer zeros. In Section 4 we construct a class of such polynomials with
a non-integral rational zero, and we also construct a class of polynomials
with a double (integer) zero. In Section 5 we apply some of the previous
results to a special choice of the set A. In Section 6 we discuss some of the
previous material from another point of view, while we extend the domain of
pA to all of Z and prove a reciprocity formula with supplement. Finally, in
Section 7 we close with a simple arithmetic proof of a well-known asymptotic
result for pA(n). We also add a remark on the error term when using the
approximation of pA(n) coming from the pole x = 1 of F (x).

2. Finite A

If k = 1, then a0 = 1 and pA(n) = 1 for all n ≥ 0. Also if k = 2 the
situation is simple. Any non-negative integer can uniquely be written as
a0a1n + a0r + a1s with n ≥ −1, 0 ≤ r < a1, 0 ≤ s < a0. Then clearly,

pA(a0a1n + a0r + a1s) = n + 1.

Now to general k. Let α be a positive common multiple of a0, a1, . . . , ak−1.
Then

F (x) =
k−1
∏

i=0

1

1 − xai
=

f(x)

(1 − xα)k
, (2.1)

where

f(x) =
k−1
∏

i=0

1 − xα

1 − xai
=

k−1
∏

i=0

αi−1
∑

j=0

xjai , (2.2)

and where αi = α/ai. Thus there are non-negative integers fi such that

f(x) = f0 + f1x + · · · + fdx
d,

where d = αk − σ for σ = a0 + a1 + · · · + ak−1. Note that the polynomial
f(x) is reciprocal, that is,

xdf

(

1

x

)

= f(x),

so that fd−i = fi for i = 0, 1, . . . , d.
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Recall the binomial series

1

(1 − y)k
=

∞
∑

n=0

(−1)n
(

−k

n

)

yn =

∞
∑

n=0

(

n + k − 1

k − 1

)

yn.

Putting y = xα in this result, we have, by (2.1),

∞
∑

n=0

pA(n)xn =
d

∑

i=0

fix
i

∞
∑

n=0

(

n + k − 1

k − 1

)

xαn.

Let r be an integer in the interval 0 ≤ r < α. We extract the terms where
the exponent of x is congruent to r mod α to get

∞
∑

n=0

pA(αn + r)xαn+r =
∑

i≥0

fαi+rx
αi+r

∞
∑

j=0

(

j + k − 1

k − 1

)

xαj ,

and where fj = 0 if j > d. We cancel xr and replace xα by x. This gives us

∞
∑

n=0

pA(αn + r)xn =
∑

i≥0

fαi+r

∞
∑

j=0

(

j + k − 1

k − 1

)

xi+j

=

∞
∑

n=0

∑

i≥0

fαi+r

(

n − i + k − 1

k − 1

)

xn.

If fαi+r 6= 0, then αi + r ≤ d, which holds if and only if i ≤ k − ⌈(r +
σ)/α⌉. Thus we have (2.3) below. Since this result holds for all n ≥ 0, the
coefficients fαi+r are unique.

Theorem 1. There are unique integers fαi+r such that for all n ≥ 0,

pA(αn + r) =
k−κ
∑

i=0

fαi+r

(

n − i + k − 1

k − 1

)

, (2.3)

where κ = ⌈(r + σ)/α⌉.

For each r = 0, 1 . . . , α− 1, we now have that pA(αn + r) is a polynomial
of degree at most k − 1 in n with rational coefficients. It follows that there
exist rational numbers ci = ci(r) such that

pA(n) = ck−1n
k−1 + ck−2n

k−2 + · · · + c0. (2.4)

Since the coefficients depend upon the residue class of n mod α, this will
usually not be a polynomial in n. An expression of this type is called a
quasi-polynomial (of quasi-period α), cf. [16, p. 210]. The result (2.4) goes
back at least to Bell [4], who used partial fraction decomposition of the
generating function to prove it.
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3. Congruences

We define the rising factorial (the “Pochhammer symbol”) by

〈u〉i = u(u + 1) · · · (u + i − 1) for i ≥ 1.

We also put 〈u〉0 = 1. Here u is not necessarily an integer.
Integers denoted r and s will be connected by the relation

r + s + σ ≡ 0 (mod α), 0 ≤ r, s < α. (3.1)

Writing r + s + σ = ακ, we have

κ =

⌈

r + σ

α

⌉

=

⌈

s + σ

α

⌉

=
r + s + σ

α
.

Due to the symmetry in r and s, to each formula below containing r and s,
we can obtain a corresponding dual formula by interchanging r and s.

Multiplying (2.3) through by (k−1)! and rearranging the factorials in the
“numerators” of the the binomial coefficients, we get

(k − 1)! pA(αn + r) = 〈n + 1〉κ−1

k−κ
∑

i=0

fαi+rPi(n), (3.2)

where

Pi(n) = (−1)i〈−n〉i〈n + κ〉k−κ−i.

Let N ≥ 2 be an integer. By (3.2), we get

(k−1)! pA (α ((k − 1)!N + n) + r) ≡ (k−1)! pA(αn+ r) (mod (k−1)!N).

Cancelling (k − 1)! and writing n for αn + r, we have

pA ((k − 1)!αN + n) ≡ pA(n) (mod N).

Thus the sequence {pA(n)}n≥0 is periodic mod N with period (k − 1)!αN .
Similarly, if N is prime to (k−1)!, then αN is a period. More generally, the
sequence {pA(n)}n≥0 is periodic mod N/ gcd((k − 1)!,N) with period αN .

By (3.2), we have the following congruence.

Theorem 2. For all n ≥ 0,

(k − 1)! pA(αn + r) ≡ 0 (mod 〈n + 1〉κ−1).

In particular, if max{0, α + 1 − σ} ≤ r < α, then

(k − 1)! pA(αn + r) ≡ 0 (mod n + 1) (3.3)

for all n ≥ 0. By replacing n by n− 1, this result may equivalently be given
the following form. Suppose that 0 < t ≤ min{α, σ − 1}. Then

(k − 1)! pA(αn − t) ≡ 0 (mod n) (3.4)

for all n ≥ 1.
Substituting (k − 1)!n for n in (3.3) and (3.4), we get

pA((k − 1)!αn + r) ≡ 0 (mod (k − 1)!n + 1)
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if max{0, α + 1 − σ} ≤ r < α, and

pA((k − 1)!αn − t) ≡ 0 (mod n)

if 0 < t ≤ min{α, σ − 1}.
These congruences are not of “Ramanujan type”. But they do imply

results with a more traditional appearance. For example, if ℓ is a prime,
ℓ ≥ k, then (3.4) gives

pA(ℓαn − t) ≡ 0 (mod ℓ )

if 0 < t ≤ min{α, σ − 1}.
Let us present another result of this type. Set a0 = ℓq ≥ k, where ℓ is a

prime, q a positive integer, and k ≡ ℓ (mod 2). Put λ = lcm{a1, a2, . . . , ak−1}
and α = λℓq. Let u and v be connected by the relation

u + v + σ ≡ 0 (mod ℓq), 0 ≤ u, v < ℓq.

By using an idea of Kronholm [6], we will show that the sequence

{pA(ℓqn + u) + pA(ℓqn + v)}n≥0 (3.5)

is periodic mod ℓ with period λ, and in particular,

pA(αn − ℓqt + u) + pA(αn − ℓqt + v) ≡ 0 (mod ℓ ) (3.6)

if 0 < t < (u + v + σ)/ℓq.
Let us look at the proof. Set

K(x) =
(1 − xλ)ℓ

q

(1 − xa1) · · · (1 − xak−1)

Putting γ = deg K(x), we have γ = (λ + 1)ℓq − σ. Thus we may write
K(x) = k0 + k1x + · · · + kγxγ ∈ Z[x]. Since ℓ ≡ k (mod 2), we have

xγK (1/x) = −K(x),

that is, K(x) is anti-reciprocal. Equivalently, we have kγ−i = −ki for i =
0, 1, . . . , γ.

Let γ∗ = λ + 1 − (u + v + σ)/ℓq. Then 0 ≤ γ∗ ≤ λ. We have kℓqi+u =
−kℓq(γ∗−i)+v. Putting

Ku(x) =
∑

i≥0

kℓqi+uxi =

γ∗

∑

i=0

kℓqi+uxi,

it follows that

Ku(x) = −xγ∗

Kv (1/x) .

For

K∗(x) = Ku(x) + Kv(x)

we then have

xγ∗

K∗ (1/x) = −K∗(x).
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Setting x = 1, we see that K∗(1) = 0, so we may write

K∗(x)

1 − x
=

γ∗−1
∑

i=0

gix
i ∈ Z[x],

where, as usual, an empty sum is taken as zero. Next,

∞
∑

n=0

pA(n)xn =
K(x)

(1 − xℓq)(1 − xλ)ℓq ≡
K(x)

(1 − xℓq)(1 − xλℓq)
(mod ℓ ).

Comparing terms where the exponent of x is congruent u mod ℓq, cancelling
xu, and replacing xℓq

by x, gives

∞
∑

n=0

pA(ℓqn + u)xn ≡
Ku(x)

(1 − x)(1 − xλ)
(mod ℓ ).

It follows that

∞
∑

n=0

(pA(ℓqn + u) + pA(ℓqn + v))xn

≡
K∗(x)

(1 − x)(1 − xλ)
≡

γ∗−1
∑

i=0

gix
i 1

1 − xλ
(mod ℓ ).

For 0 ≤ w < λ, we now have

∞
∑

n=0

(pA(ℓq(λn + w) + u) + pA(ℓq(λn + w) + v)) xn ≡ gw

∞
∑

n=0

xn (mod ℓ ),

that is,

pA(ℓq(λn + w) + u) + pA(ℓq(λn + w) + v) ≡ gw (mod ℓ ),

where gw = 0 if w ≥ γ∗. Now we see that the sequence (3.5) is periodic mod
ℓ with period λ. Moreover, if γ∗ ≤ w < λ, then

pA(αn + ℓqw + u) + pA(αn + ℓqw + v) ≡ 0 (mod ℓ ).

Replacing w by λ − t and writing n − 1 for n, we obtain (3.6) under the
given condition.

Finally, taking A = {1, 2, . . . , ℓ }, ℓ odd, we have σ = ℓ(ℓ+1)/2, so we can
set u = v = 0. By (3.5) the sequence {2pA(ℓn)}n≥0, that is, the sequence
{pA(ℓn)}n≥0, is periodic mod ℓ with period λ. Moreover, since ℓ is odd,
(3.6) gives

pA(αn − ℓt) ≡ 0 (mod ℓ )

if 1 ≤ t ≤ (ℓ− 1)/2. These results for A = {1, 2, . . . , ℓ } with ℓ an odd prime
are the results recently obtained by Kronholm [6].
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4. More Linear Factors

Since the polynomial f(x) is reciprocal, we have

fα(k−κ−i)+r = fαi+s,

and by reversing the summation order in (2.3), we get

pA(αn + r) =

k−κ
∑

i=0

fαi+s

(

n + κ + i − 1

k − 1

)

, (4.1)

while (3.2) becomes

(k − 1)! pA(αn + r) = 〈n + 1〉κ−1

k−κ
∑

i=0

fαi+sQi(n), (4.2)

where

Qi(n) = Pk−κ−i(n) = (−1)k−κ−i〈−n〉k−κ−i〈n + κ〉i = (−1)k−κPi(−n − κ).

Various results can now be deduced by combining (3.2) with (4.2) and its
dual.

Let us look at an example. Assuming k 6≡ κ (mod 2), we have Pi(−κ/2)+
Qi(−κ/2) = 0. Suppose that r = s. By adding (3.2) and (4.2), we then see
that pA(αn + r) is divisible by (n + κ/2)〈n + 1〉κ−1 in Q[n]. If k is even,
then κ is odd, and the polynomial (k − 1)! pA(αn + r) in Z[n] is divisible by
n + κ/2 in Q[n]. By Gauss’ lemma for polynomials, (k − 1)! pA(αn + r) is
then divisible by the primitive polynomial 2n + κ in Z[n]. Thus we have

(k − 1)! pA(αn + r) ≡ 0 (mod (2n + κ)〈n + 1〉κ−1).

For k odd and κ even, we do not get the bonus factor 2, and we have

(k − 1)! pA(αn + r) ≡ 0 (mod (n + κ/2)〈n + 1〉κ−1). (4.3)

Notice, however, that this modulus contains the factor (n + κ/2)2.

5. A Special Case: m-ary Partitions

Let m ≥ 2 be an integer. In this section we set

ai = mi for i = 0, 1, . . . , k − 1.

In this case, let us write pA(n) = bm,k(n). This restricted m-ary partition
function bm,k(n) enumerates the representations of n of the form

n = mε0 + mε1 + · · · + mεj ,

with εi ∈ Z and 0 ≤ ε0 ≤ ε1 ≤ . . . ≤ εj < k. We also have that bm,k(n) is
equal to the number of representations of n on the form

n = δ0 + δ1m + δ2m
2 + · · · ,

where δi ∈ Z and 0 ≤ δi < mk.
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We set α = mk−1. For k ≥ 2, we then have, by Theorem 1,

bm,k(m
k−1n + r) =

k−2
∑

i=0

fmk−1i+r

(

n − i + k − 1

k − 1

)

for unique integers fj. For m = 2, this is essentially Theorem 3.6 in Reznick
[12].

In a series of papers (see [13, 14] and the references therein) it has been
shown that bm,k(n) possesses certain divisibility properties. From Section 3
we now get divisibility properties of a rather different type. By (3.3), we
have

(k − 1)! bm,k(n) ≡ 0 (mod ⌊n/mk−1⌋ + 1). (5.1)

Moreover, by Theorem 2,

(k − 1)! bm,k(mk−1n + r) ≡ 0 (mod (n + 1)(n + 2)) (5.2)

if

mk−1 −
mk−1 − 1

m − 1
< r < mk−1. (5.3)

If m = 2, then (5.1) and (5.2) hold (under the given conditions) with the
factor (k − 1)! on each of the left hand sides replaced by ωk−1, the odd part
of (k − 1)!. We also have for odd k ≥ 3,

ωk−1b2,k(2
k−1n) ≡ 0 (mod (n + 1)2), (5.4)

and for even k ≥ 4,

ωk−1b2,k(2
k−1n) ≡ 0 (mod (n + 1)(2n + 1)(2n + 3)).

Proofs of these results are given in [15].
Let us here and now just prove that for odd k ≥ 3,

(k − 1)! b2,k(2k−1n) ≡ 0 (mod (n + 1)2), (5.5)

which is a slightly weaker version of (5.4). If we take A = {1, 2, 22, . . . , 2k−1},
then α is even while σ is odd, and the results of Section 4 are not directly
applicable. However, a bisection of the generating function of b2,k(n) gives

∞
∑

n=0

b2,k(2n)xn =
1

1 − x

k−2
∏

i=0

1

1 − x2i
.

Now, take A as the multiset A = {1, 1, 2, 22 , . . . , 2k−2}, and put α = 2k−2.
Then σ = 2k−1 = 2α, so we can take r = s = 0. We have κ = 2 and (5.5)
follows from (4.3).
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6. Linear Recurrence

In this section we look at some of the previous material from another
viewpoint. Set

Q(x) =
∏

a∈A

(1 − xa),

so that

F (x) =

∞
∑

n=0

pA(n)xn =
1

Q(x)
.

Every zero γ of Q(x) satisfies γα = 1. The zero x = 1 has multiplicity
k, and all the other zeros of Q(x) have lower multiplicity. Hence, pA(n)
is a quasi-polynomial in n of quasi-period α and of degree k − 1; cf. [16,
Proposition 4.4.1]. Thus (2.4) holds and pA(αn + r) is a polynomial in n
of degree k − 1. The abelian group of all polynomials in n of degree at
most k − 1 with complex coefficients and which map non-negative integers
to non-negative integers is free with basis

{(

n − i + k − 1

k − 1

)

| i = 0, 1, . . . , k − 1

}

;

cf. [16, p. 209]. Thus there are unique integers fj such that (2.3) holds.
Next, expand Q(x) to get

Q(x) = q0 + q1x + q2x
2 + · · · + qσxσ,

where qj ∈ Z, q0 = 1, and qσ = (−1)k. Since

Q(x)

∞
∑

n=0

pA(n)xn = 1,

we have

pA(n + σ) + q1pA(n + σ − 1) + · · · + qσpA(n) = 0 (6.1)

for all n ≥ 0. This is a homogeneous linear recurring relation of order σ.
For an integer N ≥ 2, we can consider (6.1) as a recurring relation in

the ring Z/NZ. Then there are only finitely many state vectors. Thus the
sequence {pA(n)}n≥0 is ultimately periodic mod N , and since qσ is a unit in
Z/NZ, the sequence is periodic. The state vectors also show that the least
period is at most Nσ − 1. For more precise information about the period,
we can go via the generating function F (x) as we did in Section 3.

Now, back to Z. We extend the domain of pA from the non-negative
integers to all of Z by running (6.1) “backwards” and successively substitute
n = −1,−2, . . . It follows that there is a unique extension of pA to all of Z

such that (6.1) holds for all n ∈ Z.
Let

G(x) =

∞
∑

n=1

pA(−n)xn.
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Then

G(x) = −F

(

1

x

)

as rational functions; cf. [16, Proposition 4.2.3]. By (2.1),

F

(

1

x

)

= (−1)kxσF (x),

so that
G(x) = (−1)k−1xσF (x).

Hence,
∞
∑

n=1

pA(−n)xn = (−1)k−1
∞

∑

n=σ

pA(n − σ)xn,

and, as (6.2) below extends from n ≥ σ to all of Z, we have our next theorem.

Theorem 3. For the extended partition function pA(n) we have the reci-

procity formula

pA(−n) = (−1)k−1pA(n − σ) for all n ∈ Z, (6.2)

with the supplement

pA(n) = 0 if −σ < n < 0. (6.3)

Now, (2.3) holds for all n ∈ Z. On the other hand, we can use (2.3) to
extend the domain of pA to all of Z. With n = αN + r, we have that (6.3)
is equivalent to pA(αN + r) having the factor 〈N + 1〉κ−1 in Q[N ], which is
true by (3.2). Moreover, on the background of Theorem 1, the reciprocity
formula (6.2) is equivalent to the polynomial f(x) being reciprocal, which it
is. So we could have deduced Theorem 3 directly from Theorem 1. That is,
it is not difficult to see that (6.2) follows from (2.3) and the dual of (4.1).
The method used in the present section is, however, quite transparent and
we arrive directly at Theorem 3. Without this method it is easy to overlook
results like Theorem 3.

It is well known that there is a smallest integer g = g(A) ≥ −1, the
“Frobenius number” of A, such that pA(n) ≥ 1 for all n ≥ g + 1. It follows
by (6.2) that if pA(n) = 0, then −σ − g ≤ n ≤ g. If a0 = 1, then pA(n) = 0
if and only if −σ < n < 0. In particular, for the m-ary partition function
considered in the previous section, we have that the conditions i = 1, or
i = 2 with (5.3), are necessary and sufficient for the congruence

(k − 1)! bm,k(mk−1n + r) ≡ 0 (mod n + i)

to hold for some i ∈ Z. In Section 5 we only proved the sufficiency.
The reciprocity formula (6.2) tells us that if we write (2.4) as

pA(n) = ck−1(n + σ/2)k−1 + c′k−2(n + σ/2)k−2 + · · · ,

then, as long as the coefficients ck−1, c
′
k−2, c

′
k−3, . . . are independent of the

residue class of n mod α, every second coefficient c′k−2, c
′
k−4, . . . is equal to

zero. We say more about this in the next section.
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7. Asymptotics

Since gcd A = 1, we have

pA(n) =
nk−1

(k − 1)!
∏

a∈A a
+ O(nk−2) as n → ∞. (7.1)

This is a well-known result proven by many authors. The usual proof is based
on the partial fraction decomposition of the generating function F (x); cf.
Netto [9], Pólya-Szegő [11, Problem 27]. However, Nathanson [7], [8, Section
15.2] proves (7.1) by induction on k.

We now give a simple arithmetic proof of (7.1). We have that pA(n) −
pA(n − as) is equal to the number of solutions of (1.2) with xi ≥ 0 and
xs = 0. Let δ = gcd(A \ {as}). If δ | n, then pA(n) − pA(n − as) = 0. If
δ | n, then pA(n) − pA(n − as) = pB(n/δ), where B = {ai/δ | i 6= s}. By
(2.4) for pB(n/δ), we have

pA(n) − pA(n − as) = O(nk−2), (7.2)

and this result holds whether δ | n or not. Since gcd A = 1, there are integers
ui such that 1 = u0a0+· · ·+uk−1ak−1. Thus, applying (7.2) |u0|+· · ·+|uk−1|
times, we get

pA(n) = pA(n − 1) + O(nk−2). (7.3)

If the coefficient ck−1 = ck−1(r) in (2.4) is dependent on r, there is a value
of r, 0 < r < α, such that ck−1(r − 1) 6= ck−1(r). For all n ≡ r (mod α) we
then have, by (2.4),

pA(n) = pA(n − 1) + cnk−1 + O(nk−2),

where c = ck−1(r) − ck−1(r − 1) 6= 0. This contradicts (7.3). Hence the
coefficient ck−1 in (2.4) does not depend on the residue class of n mod α.

Let us look at the coefficient of nk−1 in pA(αn + r). Replacing n by
αn + r in (2.4), we see that this coefficient is ck−1α

k−1. By (2.3), the same
coefficient is

∑

i fαi+r/(k − 1)!. Thus we have

ck−1α
k−1 =

1

(k − 1)!

k−κ
∑

i=0

fαi+r.

Summing for r = 0, 1, . . . , α − 1, we obtain

ck−1α
k =

α−1
∑

r=0

ck−1α
k−1 =

1

(k − 1)!

α−1
∑

r=0

k−κ
∑

i=0

fαi+r

=
1

(k − 1)!

d
∑

j=0

fj =
1

(k − 1)!
f(1).

Recall that αi = α/ai. Using (2.2), we further get

ck−1α
k =

1

(k − 1)!

k−1
∏

i=0

αi−1
∑

j=0

1 =
1

(k − 1)!

k−1
∏

i=0

αi =
αk

(k − 1)!
∏

a∈A a
.
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Cancelling αk, we obtain

ck−1 =
1

(k − 1)!
∏

a∈A a
,

and, by (2.4), the proof of (7.1) is complete.
There is a more refined asymptotic result for pA(n). Several authors,

including [1], [3], and [5], have determined the “polynomial part” Φ(n) of
pA(n), that is, the approximation of pA(n) coming from the zero x = 1 of
Q(x) (the pole x = 1 of F (x)). Almkvist [1] does this in an elegant way. He
first defines symmetric polynomials σm(x0, . . . , xk−1) by

k−1
∏

i=0

xit/2

sinh (xit/2)
=

∞
∑

m=0

σm(x0, . . . , xk−1)t
m.

Thus m!σm is a Bernoulli polynomial of higher order; see [10, Chap. 6].
Almkvist [1, Theorem 2.3] shows that

Φ(n) =
1

∏

a∈A a

k−1
∑

i=0

σi(a0, . . . , ak−1)
(n + σ/2)k−1−i

(k − 1 − i)!
.

For an integer j in the interval 1 ≤ j ≤ k, there is no zero ξ 6= 1 of Q(x)
with multiplicity v, j ≤ v ≤ k, if and only if gcd A′ = 1 for all j-subsets
A′ of A. In this case we have that all the coefficients ck−1, ck−2, . . . , cj−1 in
(2.4) are determined by the zero x = 1 of Q(x); cf. [16, Proposition 4.4.1].
In particular, ck−1, ck−2, . . . , cj−1 are independent of the residue class of n
mod α. Thus we have the following result.

Theorem 4. Let j be an integer in the interval 1 ≤ j ≤ k. Suppose that

gcd A′ = 1 for all j-subsets A′ of A. Then we have

pA(n) =
1

∏

a∈A a

k−j
∑

i=0

σi(a0, . . . , ak−1)
(n + σ/2)k−1−i

(k − 1 − i)!
+ O(nj−2)

as n → ∞.

We have σ0 = 1, and, in conformity with the reciprocity formula (6.2),
σm = 0 if m is odd. Set si = ai

0 + ai
1 + · · · + ai

k−1. Then

σ2 = −
s2

24
, σ4 =

5s2
2 + 2s4

5760
, σ6 = −

35s3
2 + 42s2s4 + 16s6

2903040
.

Notice that, if the integers ai are relatively prime in pairs, then Theorem 4
gives all the coefficients ci in (2.4), with the exception of c0 = c0(n).

In closing let us include a consequence of Theorem 4. Let pk(n) denote the
number of partitions of n into at most k parts. We know that pk(n) = pA(n)
for A = {1, 2, . . . , k}. Exact expressions for pk(n) for k ≤ 5 are given in [2].
If A∗ is a subset of A with gcd A∗ > 1, then A∗ contains at most ⌊k/2⌋
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elements. Thus we can set j = ⌊k/2⌋ + 1 in Theorem 4 to get

pk(n) =
1

k!

⌊(k−1)/2⌋
∑

i=0

σi(1, 2, . . . , k)
(n + k(k + 1)/4)k−1−i

(k − 1 − i)!
+ O(n⌊k/2⌋−1)

as n → ∞.
The partition function pk(n) is a distinguished representative of the par-

tition functions enumerating the partitions of n into parts in a finite set.
Most results for pk(n) are valid for fixed k and variable n. An interesting
but difficult problem is to find results for pk(n) valid for fixed n and variable
k. Nathanson [8, p. 474] asks for an elementary proof of the unimodality of
the sequence {pk(n−k)}1≤k≤n, proven for n large by Szekeres [17, 18] using
difficult analytic techniques.
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