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Abstract Recently Gordon and McIntosh introduced the third order mock
theta function £(q) defined by
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Our goal in this paper is to study arithmetic properties of the coefficients
of this function. We present a number of such properties, including several
infinite families of Ramanujan—like congruences.

6n —6n+1

(@5 q%)n

Keywords congruence - generating function - mock theta function

Mathematics Subject Classification (2010) MSC 11P83 - MSC 05A17

1 Introduction

In his last letter to Hardy in 1920, Ramanujan introduced the notion of a mock
theta function. He listed 17 such functions having orders 3, 5, and 7. Since then,
other mock theta functions have been found. Gordon and McIntosh [7], for
example, introduced many additional such functions, including the following

of order 3:
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where we use the standard g-series notation:

(a;q)o =1,
(@59)n = (1 —a)(1 —aq)--- (1 —ag"™!),¥n > 1,
(@;¢)oo = lim (a;¢)n, [q] < 1.

Arithmetic properties of the coefficients of mock theta functions have re-
ceived a great deal of attention. For instance, Zhang and Shi [15] recently
proved seven congruences satisfied by the coefficients of the mock theta func-
tion S(g) introduced by McIntosh. In a recent paper, Brietzke, da Silva, and
Sellers [5] found a number of arithmetic properties satisfied by the coefficients
of the mock theta function V;(g), introduced by Gordon and McIntosh [6].
Andrews et al. [2] prove a number of congruences for the partition functions
pw(n) and p, (n), introduced in [1], associated with the third order mock theta
functions w(q) and v(q), where w(q) is defined below and

Z

— n+1

n(n+l)

In a subsequent paper, Wang [14] presented some additional congruences for
both p,(n) and p,(n).
This paper is devoted to exploring arithmetic properties of the coefficients

pe(n) defined by
> pe(n)g” = €(q). (2)
n=0
It is clear from (1) that p¢(n) is even for all n > 1. In Sections 4 and 5, we
present other arithmetic properties of p¢(n), including some infinite families
of congruences.

2 Preliminaries
MclIntosh [12, Theorem 3] proved a number of mock theta conjectures, includ-
ing
w(q) = g3(¢,4°) and (3)
2. .2\4
(650 ) ()

) = s(a”,0") + (¢ 9)%(45 ¢5) o

where
n(n+1)/2

gag) =3 : (=% 9)ng

(a3 Q)n+1(a7 G @t
and w(q) is the third order mock theta functions given by
> q2n(n+1)

w(q)zz(qq)

n+1
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It follows from (1), (3), and (4) that
(¢%4°)5%
€(q) = Pw(@®) + — 52— 5
@ . (45 0)% (4% ¢%) oo (5)
Throughout the remainder of this paper, we define
fri=(0":4")o0

in order to shorten the notation. Combining (5) and (2), we have

oo 4
;;mmmnzfmfy+éz. (6)

We recall Ramanujan’s theta functions

f(a,b) Z o=y , for Jab] < 1,

0(q) = fla,q) = n;mq _f1f27 and (7)
@) = flag?) = 3 gz = B ®)
n=0 fl
The function ¢(q) satisfies many identities, including (see [3, (22.4)])
=
P(—q) = T (9)

In some of the proofs, we employ the classical Jacobi’s identity (see [4,
Theorem 1.3.9])

;= i(—l)”(% +1)g D2, (10)

n=0
We note the following identities which will be used below.

Lemma 1 The following 2-dissection identities hold.

i_ /2 fifis

E T T (1)
2 f2f8 L faffs

fl = fsz126 2q s s (12)
1 14 4

1= 71 T +4q f41];8’ (13)
1 2 2

fs _ f4f6f16f224 fofd fas

fi  f2fshafis T f2f16f24 (14)

13 fifefts +2qf4f6fsf24 (15)

f12 _f§f8f24 félle ’
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BB B
e U 18)
Lzz fgﬁng +3qfff67f1227 (17)
T oS /s
1 i fh 1213
ih  Bhdis VR R 18)
Proof By Entry 25 (i), (ii), (v), and (vi) in [3, p. 40], we have
¢(q) = ¢(q*) + 2q1(¢®), (19)
9(9)? = o(¢*)* + 4qv(¢")*. (20)

Using (7) and (8) we can rewrite (19) in the form

s

fs’

B R
7R R

+ 2¢q

17

from which we obtain (11) after multiplying both sides by 5 Identity (12)
2

can be easily deduced from (11) using the procedure described in Section 30.10
of [9].
By (7) and (8) we can rewrite (20) in the form

P _ A
= St e,
AT HRTR

from which we obtain (13).
Identities (14), (15), and (18) are equations (30.10.3), (30.9.9), and (30.12.3)
of [9], respectively. Finally, for proofs of (16) and (17) see [13, Lemma 4].

The next lemma exhibits the 3-dissections of ¢(q) and 1/¢(—q).
Lemma 2 We have

_ fef§ | f

vla) = fafis 1 fo’ @)
L fefS 1o 4 2 fofis
oo R T T 22)

Proof Identity (21) is equation (14.3.3) of [9]. A proof of (22) can be seen in
[11].
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3 Dissections for pg(n)

This section is devoted to proving the 2-, 3-, and 4-dissections of (2). We begin

with the 2-dissection.
Theorem 1 We have

f8 fr2 51
9 20+ 1)g"+ = 16112 g1z oy, 28 d
;:OPE nt D= S~ f(0) Hdap TR an
= f6 [ 4 6 3
2 = — .
;Pd n)q" = Ceips, 4 w(—¢") + hT?
Proof We start with equation (4) of [2]:
F(a®) + 2qu(q) +2¢°w(~q") = F(q),
where f(g) is the mock theta function
"
fla) = ,;) (—¢;9)2
e DO _ Dol
q)p\q 2J4
F(q) = = .
D= TR
Thus,
F(@*) +2¢°w(d®) + 2¢°w(—¢"*) = F(¢%).
Using (5), it follows that
4
2 Zpg " =F(¢%) = f(¢*) = 2¢°w(—4"*) + 2055
fife
By (11), we have
Fg®) = f12f§4 P 3f%f§8
fa fi f6 fou

which along with (11) allows us to rewrlte (25) as

iz T,
I ) 1212
ofols T Rfefs

9 io:pf(n)qn—&-l fl2f24 +9 3f182ff8 _ f<q24) _ 2q9w<_q12>
=0

+ 2¢q

Thus,

- on+a _ Jiafoa 24 o fifis
2;:0“(2"“)" = i, @) AT, and

ip€(2n)q2n+l 3f12f48 _ q9w(_q12) +q f85 .
n— f6f24 f2f6f126

(23)

(24)
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Dividing (27) by ¢ and replacing ¢ by ¢ in the resulting identity and in (26),
we obtain (23) and (24).

The next theorem exhibits the 3-dissection of (2).

Theorem 2 We have

ips(fin)cﬁ = % (28)
n=0 fl 6
ipg(?m +1)¢" = 2%, and (29)
n=0 1
%) 4
gpg(fm +2)¢" =w(q) + fz%' (30)

Proof In view of (8), we rewrite (6) as

> pe(n)g" = w(d®) + wgcq)Q'
n=0 6

Using (21), we obtain

f26f§ L 2qf9fus
f3 18

+q2 f{l8 . (31)

- n__ 2 3
;pg(n)q =qw(q’) + 7, Jof2

Extracting the terms of the form ¢®"*" on both sides of (31), for r € {0, 1,2},
dividing both sides of the resulting identity by ¢” and then replacing ¢* by ¢,
we obtain the desired results.

We close this section with the 4-dissection of (2).

Theorem 3 We have

pr( n)q q fg?fg qw( Q)+f12f§1 1227 ( )
n=0
s 3 r2 4 r5
Zpg(4n+1)q":2qf6£12+2 Qf‘{% , (33)
o I3 I3 152
- W S 13213
4 = d 4
D peldn+ 200" = g+ g an (34
Qips(4n+ 3)¢"t = foo _ F(d®) +4q fiffe (35)
f3fh fi13fe

n=0



Congruences for the coefficients of £(q) 7

Proof In order to prove (32), we use (13) and (18) to obtain the even part of
(24), which is given by

fif
f316F3

f34

g, O

Zp§(4n)q2n _ 4q4
n=0

Replacing ¢* by ¢ we obtain (32).
Using (13) and (18) we can extract the odd part of (23):

= 2n+1 3fi32f224 féfig
2) pe(dn + 1)t = 4¢P 22 4 ag B
fG f4f6f24

n=0

After simplifications we arrive at (33).
Next, extracting the odd part of (24) with the help of (13) and (18) yields

O
[813 TS s he
which, after simplifications, gives us (34).

In order to obtain (35), we use (13) and (18) in (23) to extract its even
part:

Zpg (4n + 2)q2”+1 =

n=0

4 £2
o [fifi

LTI

— 2 2 fllét3 12
23 peldn+3)g " = S0 — f(a'?) +4
6J24

Replacing ¢2 by ¢ in this identity, we obtain (35).

n=0

4 Arithmetic properties of p¢(n)

Our first observation provides a characterization of ps(3n) (mod 4).
Theorem 4 For alln > 0, we have

1 (mod4), ifn=0,
pe(3n) = (2 (mod 4), ifn is a square,
0

(mod 4), otherwise.

Proof By (28), using (9) and the fact that fi = f2, (mod 4) for all k > 1, it
follows that

i 4 2 2
Zp£(3”)qn = ]J:lzf% = JJ:? = f}ijfg = % =¢(—¢q) (mod 4).
n=0

By (7), we obtain

oo

D opeBr)g"= Y (-)"¢" =1+2) ¢"  (mod 4),
n=0 n=1

n=—oo

which completes the proof.
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Theorem 4 yields an infinite family of Ramanujan-like congruences modulo
4.

Corollary 1 For all primes p > 3 and all n > 0, we have
pe(3(pn+7)) =0 (mod 4),
if r is a quadratic nonresidue modulo p.
Proof If pn +r = k?, then r = k? (mod p), which contradicts the fact that r
is a quadratic nonresidue modulo p.

Since ged(3,p) = 1, among the p — 1 residues modulo p, we have %
residues r for which r is a quadratic nonresidue modulo p. Thus, for instance,
the above corollary yields the following congruences:

pe(In+6)=0
pe(1bn+k) =0
pe(2In+k) =0
pe(33n+k) =0

mod 4),

mod 4), for k € {6,9},

mod 4), for k € {9,15,18),

mod 4), for k € {6,18,21,24,30}.

P

Theorem 5 For all n > 0, we have

pe(3n+1)

2 (mod 4), if3n+1 isa square,
0 (mod 4), otherwise.

Proof From Theorem 2,

> pe(Bn+1)g" = 2%. (36)

n=0
So we only need to consider the parity of
I3J6
fi
Note that

3 o
% = % = Zag(n)q" (mod 2),

n=0

where ag(n) is the number of 3-core partitions of n (see [10, Theorem 1]).
Thanks to [8, Theorem 7|, we know that

as(n) = 1 (mod 2), if 3n+ 1 is a square,
70 (mod 2), otherwise.

This completes the proof.

Theorem 5 yields an infinite family of congruences modulo 4.
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Corollary 2 For all primes p > 3 and all n > 0, we have

pe(B(pn+7)+1)=0 (mod 4),

if 3r + 1 is a quadratic nonresidue modulo p.

Proof If 3(pn + 1) + 1 = k2, then 3r +1 = k? (mod p), which would be a
contradiction with 3r + 1 being a quadratic nonresidue modulo p.

For example, the following congruences hold for all n > 0 :
pe(16n+k) =0
pe(2ln+k) =0
pe(33n+k)=0

(mod 4), for k € {7,13},
(mod 4), for k € {10, 13,19},
(mod 4), for k € {7,10,13,19,28}.

We next turn our attention to the arithmetic progression 4n + 2 to yield
an additional infinite family of congruences.

Theorem 6 For all n > 0, we have

pe(dn +2) = {2 (mod 4),

ifn=6k(3k£1),
0 (mod 4),

otherwise.
Proof From (34), we obtain
N w_ fo I I8
D pe(n+2)q" = 50 + 2 =20 =2f2 =2f1, (mod4).  (37)
=0 f3fy  f3fe 3
Using Euler’s identity (see [9, Eq. (1.6.1)])
fr="Y (=nrg®rhre, (38)
we obtain
Zp5(4n_’_2)qn =9 Z (_1)nq6n(3n—1) (mod 4)7
n=0 n=-—oo

which concludes the proof.

Theorem 6 yields an infinite family of congruences modulo 4.

Corollary 3 Let p > 3 be a prime and r an integer such that 2r +1 is a
quadratic nonresidue modulo p. Then, for all n > 0,

pe(d(pn+7)+2)=0 (mod 4).

Proof If pn+r = 6k(3k=+1), then r = 18k?+6k (mod p). Thus, 2r+1 = (6k+
1)2 (mod p), which contradicts the fact that 2r + 1 is a quadratic nonresidue
modulo p.
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Thanks to Corollary 3, the following example congruences hold for all n >
0:

( ) (mod 4), for j e {6,14},

( ) (mod 4), for j € {6,10,26},
pe(44n+j) =0 (mod 4), for je {14,26,34,38,42},

( ) (mod 4), for j € {10,14,22,30, 38,42}.

We now provide a mod 8 characterization for pe(3n).

Theorem 7 For alln > 0, we have

1 (mod 8), ifn=0,
6(—1)* (mod 8), ifn=k?,

O B e A
4 (mod B), if n=2k* n=3k? orn=6k?
0 (mod 8), otherwise.

Proof By (28), using (7) and (9), we have

e 6 4 2\ 3 2\ 2
Zps<3n>q"=f}§}§3 E(J}) (jﬁ) = o(—0)*6(—¢*)?
n=0

I
7 N
—_

+
[N
(]
T
—_
SN—

3
')

3
~__—

w
VR
=
+
[N
3
gk
T
=
3
Q
w
3
[V
~_—
()
—~
8
o
[oN
[o's)
S~—

which yields

> peBn)g"=1+6 Z(—l)"q"2 +4 (Z(—l)”ﬁ)
n=0

n=1 n=1
o0 oo 2
+4) (-1 +4 <Z(1)”q3” ) (mod 8).
n=1 n=1
Since
o0 2 (e ]
<Z(—1)”qn ) =) ¢ (mod2),
n=1 n=1
we have

oo 2 o0
(Z(—l)”q3”2> EZq6"2 (mod 2).
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Therefore

o0 oo 5 o0 R

Zpg(?m)q" =146 Z(—l)"q” +4 Z ek

n=0 n=1 n=1

+4 Z(—l)”qg"2 +4 Z ¢ (mod 8),
n=1 n=1

which completes the proof.

As with the prior results, Theorem 7 provides an effective way to yield an
infinite family of congruences modulo 8.

Corollary 4 Let p be a prime such that p = +1 (mod 24). Then,
pe(3(pn+7)) =0 (mod 8),
if 7 is a quadratic nonresidue modulo p.

Proof Since p = 1 (mod 8) and p = 1 (mod 12), it follows that 2 and 3 are
quadratic residues modulo p. Thus, 7, 2r, 3r, and 6r are quadratic nonresidues
modulo p. Indeed, according to the properties of Legendre’s symbol, for j €

{1,2,3,6}, we have
5-06-0)-

It follows that we cannot have 3(pn + r) = jk?, for some kK € N and j €
{1,2,3,6}. In fact, 3(pn+r) = jk? would imply 3(pn+r) = 3r = jk? (mod p).
However, for j = 1,2, 3,6, this would imply that 3r, 67, r, or 2r, respectively,
is a quadratic residue modulo p, which would be a contradiction since 2, 3, and
6 are quadratic residues modulo p. The result follows from Theorem 7.

As an example, we note that, for p = 23 and all n > 0, we have
pe(69n+k) =0 (mod 8), for k € {15,21, 30, 33,42, 45, 51, 57,60, 63, 66}.
Theorem 8 For alln > 0, we have

pe(I2n+4) =pe(3n+1) (mod 8).

Proof Initially we use (14) to extract the odd part on both sides of (29). The
resulting identity is

f312 foa

fi fsfrz

> pelbn+4)g" =2 (39)
n=0

Using (15) in (39), we obtain

f3f3fe _ 2ff’fzﬁj%fﬁ _ 2f3f6

12 4" =2
2 plion i =2 =2 =2,

n=0

(mod 8).

The result follows using (29).
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Now we present complete characterizations of pg(48n +4) and pe(12n+ 1)
modulo 8.

Theorem 9 For alln > 0, we have

2(—=1)* (mod 8), ifn=~k(Bk=+1),

48n +4) = pe(12n+ 1) =
pe(48n +4) = pe(12n + 1) {() (mod 8), otherwise.

Proof The first congruence follows directly from Theorem 8. Replacing (14)
in (29), we obtain

oo
faf§ fr6f34 f& 18 fs
3n+1)¢" =2 + 2 .
,;p et D = e e T 2 2 Frofon
Extracting the terms of the form ¢*>7, we have
- faf§ fref3,
6n + 1)g?" = 22276720724
nz::opg( 1 13 fs frz fas
which, after replacing ¢2 by ¢, yields
- fafifsfis
pe(6n + 1)g" = 2227378712 40
2 pelon+ e =2 (40
Now we use (15) to obtain
- 315
pe(12n + 1)¢" = 2
HZ:O ¢ fife
=2fy =2 Z (=1)"¢"B"=Y  (mod 8), (by (38))

which completes the proof.

Theorem 9 also provides an effective way to yield an infinite family of
congruences modulo 8.

Corollary 5 For all primes p > 3 and all n > 0, we have
pe(48(pn+ 1) +4) = p(12(pn+7)+1) =0 (mod 8),
if 12r + 1 is a quadratic nonresidue modulo p.

Proof Let p > 3 be a prime and 12r + 1 a quadratic nonresidue modulo
p. If pn +r = k(3k £ 1), then » = 3k%* £ k (mod p), which implies that
12r+1 = (6k+1)? (mod p), a contradiction. The result follows from Theorem
9.
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5 Additional congruences

In this section, we prove several additional Ramanujan—like congruences that
are not included in the results of the previous section.

Theorem 10 For all n > 0, we have

pe(24n+19) =0 (mod 3), (41)
pe(2Tn+18) =0 (mod 3), and (42)
pe(72n+51) =0 (mod 3). (43)

Proof Using (15) we can now 2-dissect (40) to obtain

. 3 £4 9
ZP&(GTL + 1" = inflf + 4qf<3f£;3]0127
n=0 [ 134 fs
from which we have
- 2
Zpg(12n + 7)g* T = 4qf617;?3f12.
2

n=0

Now, dividing both sides of the above expression by ¢ and replacing ¢ by ¢,
we obtain

> pe(12n+7)g" :4f‘°’§‘§fﬁ. (44)

n=0

Using (17) we rewrite (44) as

fifs

31t

fAfarh

Zpg(lQn—i—?)q" =4 =
/3

n=0

+ 12¢q

Taking the odd parts on both sides of the last equation, we are left with

f3 F3 18
g

> pe(24n +19)¢" = 12

n=0

which proves (41).
In order to prove (42), we use (22) to extract the terms of the form ¢3" of
(28). The resulting identity is

ipg(gn)q?m _ fgfg
n=0

T 430
f318
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which, after replacing ¢® by ¢ and using (8), yields

0 2 6 2 r5
Z:pg(Qn)q" = ;?15%, = 5021]{;;, =1(q );Z (mod 3).

By (8), we have

pr(f)n)q =3 Zq (n+1)/2 (mod 3).
n=0 fﬁ n=0

Since n(n+1)/2 # 2 (mod 3) for all n > 0, all terms of the form ¢3"*2 in the
last expression have coefficients congruent to 0 (mod 3), which proves (42).
We now prove (43). Replacing (22) in (28) and extracting the terms of the

form ¢3"*2, we obtain
> pe(on+6) = ag2 8 (45)
n=0 f3
Dividing both sides of (45) by ¢? and replacing ¢ by ¢, we have
f Je
Z pe(In + 6)q . (46)
n=0 fl
Now we use (11) to extract the odd part of (46) and obtain

ip5(18n—|— 15)¢" = f2f3f8 )
= f2fa

Since f? = f3 (mod 3), we have

;) pe(18n + 15)¢" of ff‘é?}f 8 (mod 3).
Using (15) we obtain
Zpg 36n 4 15)¢" o [21514f5 (mod 3).

2 Cfife

Since the odd part of (17) is divisible by 3, then the coefficients of the terms
of the form ¢*"*! in Y77  pe(36n + 15)¢™ are congruent to 0 modulo 3. This
completes the proof of (43).

We now prove a pair of unexpected congruences modulo 5 satisfied by
pe(n).
Theorem 11 For alln > 0, we have
pe(4bn +33) =
pe(45n +42) =

(mod 5), (47)

0
0 (mod 5). (48)
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Proof By (46), we have

oo 3 3
Zpg(Qn +6)¢" = ;62 flff% = 4%{6 (mod 5).

Thanks to Jacobi’s identity (10) we know

fre= Z (—1)7+R(25 + 1)(2k + 1)g¥ D FTR(E+D/2,
7,k=0

Note that, for all integers j and k, 3j(j + 1) and k(k + 1)/2 are congruent to
either 0, 1 or 3 modulo 5. The only way to obtain 3j(j+1)+k(k+1)/2 = 5n+3
is the following:

—3j(j+1) =0 (mod 5) and k(k + 1

) 3 (mod 5), or
—3j(j+1) =3 (mod 5) and k(k + 1)

)

)=

/2
/2 =0 (mod 5).

Thus, j =2 (mod 5) or k =2 (mod 5) in all possible cases, and this means

(2j +1)(2k + 1

Therefore, for all n > 0, pe(45n + 33) = pe(9(5n+3) +6) =0 (mod 5), which
is (47).
In order to complete the proof of (48), we want to see when

(mod 5).

3jG+1)+k(k+1)/2="5n+4.

Four possible cases arise:

— k=1 (mod 5) and j =2 (mod 5),
— k=3 (mod 5) and j =2 (mod 5),
— j=1 (mod 5) and k=2 (mod 5), or
— j7=3 (mod 5) and k=2 (mod 5).
(

In all four cases above, either j =2 (mod 5) or k =2 (mod 5). So
25+ 1)(2k+1)=0 (modb)
in all these cases. Therefore,
pe(45n +42) = pe(9(5n+4)+6) =0 (mod 5),
which completes the proof of (48).

Next, we prove three congruences modulo 8 which are not covered by the
above results.

Theorem 12 For alln > 0, we have
pe(16n +14) =0  (mod 8), (49)

pe(24n+13) =0 (mod 8), (50)
pe(2dn+22) =0 (mod 8). (51)
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Proof Initially we prove (49). From (34) and (7) we have

:f3f6 [t 2
pr (An +2)q" = 1, fng(b(q) (mod B).

2n+1

Now we can use (11), (12), and (20) to extract the terms involving ¢ from

both sides of the previous congruence:

pr 8n+6) 2n+1 2 3 f6f48 2 3 fi0f12f48 +4 f8f12f24 (HlOd 8)

n—0 f12f24 f2f6f8f24 f4f6f48
After dividing both sides by ¢ and then replacing ¢ by ¢, we are left with
f3 34 [0 18 34 fifS i
pe(8n + 6)q + 2¢q +4
nZo el Mpzfe PR R RIS
1313 1516 f5 Jifs
=205 + 2¢q +4
f8 frz 32 f12 13 f6 134
3
= Jifie (mod 8)
e

whose odd part is congruent to 0 modulo 8, which implies (49).
In order to prove (50), we use (15) to obtain the even part of identity (40),
which is

- 318
pe(12n+1)¢" =2 .
2 it
Now, employing (13), we obtain the odd part of the last identity, which is
n=0 fl

which implies (50).
Now we prove (51). We employ (15) in (39) to obtain

12 10)¢" =4 . 52
T;Opé( n+10)q f%fg (52)
By (12) and (13), we rewrite (52) in the form
L2 ( ity f4fs> (f6f24 3f6ffs>
ZPE 12+ 10)" f6 2 él ’ f12f48 2 faa 7

n=0

from which we obtain

Zpg (24n + 22)¢>" 1 =4

131t ( 2% 5 fi'fof3s 1 4q

fff6f§f254>
g f3t f8 foa .

£ Fa Fis
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Dividing both sides by g and replacing ¢ by ¢, we are left with

g BB (BRI

> pe(24n +22)¢" = Ity fi s ff315

n=0
which implies (51).
We close this section by proving a congruence modulo 9.

Theorem 13 For alln > 0, we have
pe(96n+76) =0 (mod 9). (53)

Proof We use (21) to extract the terms of the form ¢3"*! from (32). The
resulting identity is

S n fefof
> pe(12n +4)¢* T = 2q 3’;5;218,
o 3J12

which, after dividing by ¢ and replacing ¢® by g, yields

f2f3f6 _ f2f6 f3 1
;)pf Bon ) =2 =2

Using (13) and (14), we extract the even part on both sides of the above
identity to obtain

f213f3f8f12 +8q J318 foa
f110f4f6f24 f1f8f12

f213f8f12 1 + 8¢ I8 fou f1
f4f6f24 fifs f8f12 f3

Zp5 (24n + 4)¢"

n=0

(mod 9).

Now we employ (18) and (16) to extract the odd part on both sides of the last
congruence:

f1f6f12 —|—8f29f12 _ f6f12

Zp& (48n +28)¢" I3 fa fife = fa

n=0

(mod 9),

which implies (53).
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6 Concluding remarks

Computational evidence indicates that p¢(n) satisfies many other congruences.
The interested reader may wish to consider the following two conjectures.

Conjecture 1

Z pe(8n+3)¢" =2 Z @ tY/2 0 (mod 3)
n=0 n=0

Conjecture 2

o0 o0
Zp5(32n +12)¢" =6 Z @ HD/2 0 (mod 9)

n=0 n=0

Clearly, once proven, Conjectures 1 and 2 would immediately lead to in-
finite families of Ramanujan—like congruences. Morever, Conjecture 2 would
immediately imply Theorem 13 since 96n + 76 = 32(3n + 2) + 12 while the
right-hand side of Conjecture 2 is clearly a function of ¢3. The same argument
would imply that, for all n > 0,

pe(96n+44) =0 (mod 9)

since 96n + 44 = 32(3n + 1) + 12.
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