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Abstract Recently Gordon and McIntosh introduced the third order mock
theta function ξ(q) defined by

ξ(q) = 1 + 2

∞∑
n=1

q6n
2−6n+1

(q; q6)n(q5; q6)n
.

Our goal in this paper is to study arithmetic properties of the coefficients
of this function. We present a number of such properties, including several
infinite families of Ramanujan–like congruences.
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1 Introduction

In his last letter to Hardy in 1920, Ramanujan introduced the notion of a mock
theta function. He listed 17 such functions having orders 3, 5, and 7. Since then,
other mock theta functions have been found. Gordon and McIntosh [7], for
example, introduced many additional such functions, including the following
of order 3:

ξ(q) = 1 + 2

∞∑
n=1

q6n
2−6n+1

(q; q6)n(q5; q6)n
, (1)
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where we use the standard q-series notation:

(a; q)0 = 1,

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1),∀n ≥ 1,

(a; q)∞ = lim
n→∞

(a; q)n, |q| < 1.

Arithmetic properties of the coefficients of mock theta functions have re-
ceived a great deal of attention. For instance, Zhang and Shi [15] recently
proved seven congruences satisfied by the coefficients of the mock theta func-
tion β(q) introduced by McIntosh. In a recent paper, Brietzke, da Silva, and
Sellers [5] found a number of arithmetic properties satisfied by the coefficients
of the mock theta function V0(q), introduced by Gordon and McIntosh [6].
Andrews et al. [2] prove a number of congruences for the partition functions
pω(n) and pν(n), introduced in [1], associated with the third order mock theta
functions ω(q) and ν(q), where ω(q) is defined below and

ν(q) =

∞∑
n=0

qn(n+1)

(−q; q2)n+1
.

In a subsequent paper, Wang [14] presented some additional congruences for
both pω(n) and pν(n).

This paper is devoted to exploring arithmetic properties of the coefficients
pξ(n) defined by

∞∑
n=0

pξ(n)qn = ξ(q). (2)

It is clear from (1) that pξ(n) is even for all n ≥ 1. In Sections 4 and 5, we
present other arithmetic properties of pξ(n), including some infinite families
of congruences.

2 Preliminaries

McIntosh [12, Theorem 3] proved a number of mock theta conjectures, includ-
ing

ω(q) = g3(q, q2) and (3)

ξ(q) = q2g3(q3, q6) +
(q2; q2)4∞

(q; q)2∞(q6; q6)∞
, (4)

where

g3(a, q) =

∞∑
n=0

(−q; q)nqn(n+1)/2

(a; q)n+1(a−1q; q)n+1

and ω(q) is the third order mock theta functions given by

ω(q) =

∞∑
n=0

q2n(n+1)

(q; q2)2n+1

.
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It follows from (1), (3), and (4) that

ξ(q) = q2ω(q3) +
(q2; q2)4∞

(q; q)2∞(q6; q6)∞
. (5)

Throughout the remainder of this paper, we define

fk := (qk; qk)∞

in order to shorten the notation. Combining (5) and (2), we have

∞∑
n=0

pξ(n)qn = q2ω(q3) +
f42
f21 f6

. (6)

We recall Ramanujan’s theta functions

f(a, b) :=

∞∑
n=−∞

a
n(n+1)

2 b
n(n−1)

2 , for |ab| < 1,

φ(q) := f(q, q) =

∞∑
n=−∞

qn
2

=
f52
f21 f

2
4

, and (7)

ψ(q) := f(q, q3) =

∞∑
n=0

qn(n+1)/2 =
f22
f1
. (8)

The function φ(q) satisfies many identities, including (see [3, (22.4)])

φ(−q) =
f21
f2
. (9)

In some of the proofs, we employ the classical Jacobi’s identity (see [4,
Theorem 1.3.9])

f31 =

∞∑
n=0

(−1)n(2n+ 1)qn(n+1)/2. (10)

We note the following identities which will be used below.

Lemma 1 The following 2-dissection identities hold.

1

f21
=

f58
f52 f

2
16

+ 2q
f24 f

2
16

f52 f8
, (11)

f21 =
f2f

5
8

f24 f
2
16

− 2q
f2f

2
16

f8
, (12)

1

f41
=

f144
f142 f48

+ 4q
f24 f

4
8

f102
, (13)

f3
f1

=
f4f6f16f

2
24

f22 f8f12f48
+ q

f6f
2
8 f48

f22 f16f24
, (14)

f23
f21

=
f44 f6f

2
12

f52 f8f24
+ 2q

f4f
2
6 f8f24
f42 f12

, (15)
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f31
f3

=
f34
f12
− 3q

f22 f
3
12

f4f26
(16)

f3
f31

=
f64 f

3
6

f92 f
2
12

+ 3q
f24 f6f

2
12

f72
, (17)

1

f1f3
=

f28 f
5
12

f22 f4f
4
6 f

2
24

+ q
f54 f

2
24

f42 f
2
6 f

2
8 f12

(18)

Proof By Entry 25 (i), (ii), (v), and (vi) in [3, p. 40], we have

φ(q) = φ(q4) + 2qψ(q8), (19)

φ(q)2 = φ(q2)2 + 4qψ(q4)2. (20)

Using (7) and (8) we can rewrite (19) in the form

f52
f21 f

2
4

=
f58

f24 f
2
16

+ 2q
f216
f8
,

from which we obtain (11) after multiplying both sides by
f2
4

f5
2

. Identity (12)

can be easily deduced from (11) using the procedure described in Section 30.10
of [9].

By (7) and (8) we can rewrite (20) in the form

f102
f41 f

4
4

=
f104
f42 f

4
8

+ 4q
f48
f24
,

from which we obtain (13).

Identities (14), (15), and (18) are equations (30.10.3), (30.9.9), and (30.12.3)
of [9], respectively. Finally, for proofs of (16) and (17) see [13, Lemma 4].

The next lemma exhibits the 3-dissections of ψ(q) and 1/φ(−q).

Lemma 2 We have

ψ(q) =
f6f

2
9

f3f18
+ q

f218
f9
, (21)

1

φ(−q)
=

f46 f
6
9

f83 f
3
18

+ 2q
f36 f

3
9

f73
+ 4q2

f26 f
3
18

f63
. (22)

Proof Identity (21) is equation (14.3.3) of [9]. A proof of (22) can be seen in
[11].
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3 Dissections for pξ(n)

This section is devoted to proving the 2-, 3-, and 4-dissections of (2). We begin
with the 2-dissection.

Theorem 1 We have

2

∞∑
n=0

pξ(2n+ 1)qn+1 =
f66 f12
f43 f

2
24

− f(q12) + 4q
f22 f

2
8

f1f3f4
, and (23)

∞∑
n=0

pξ(2n)qn = q
f86 f

2
24

f43 f
5
12

− q4ω(−q6) +
f54

f1f3f28
. (24)

Proof We start with equation (4) of [2]:

f(q8) + 2qω(q) + 2q3ω(−q4) = F (q),

where f(q) is the mock theta function

f(q) =

∞∑
n=0

qn
2

(−q; q)2n

and

F (q) =
φ(q)φ(q2)2

f24
=
f2f

6
4

f21 f
4
8

.

Thus,
f(q24) + 2q3ω(q3) + 2q9ω(−q12) = F (q3).

Using (5), it follows that

2

∞∑
n=0

pξ(n)qn+1 = F (q3)− f(q24)− 2q9ω(−q12) + 2q
f42
f21 f6

. (25)

By (11), we have

F (q3) =
f612f24
f46 f

2
48

+ 2q3
f812f

2
48

f46 f
5
24

,

which along with (11) allows us to rewrite (25) as

2

∞∑
n=0

pξ(n)qn+1 =
f612f24
f46 f

2
48

+ 2q3
f812f

2
48

f46 f
5
24

− f(q24)− 2q9ω(−q12)

+ 2q
f58

f2f6f216
+ 4q2

f24 f
2
16

f2f6f8
.

Thus,

2

∞∑
n=0

pξ(2n+ 1)q2n+2 =
f612f24
f46 f

2
48

− f(q24) + 4q2
f24 f

2
16

f2f6f8
, and (26)

∞∑
n=0

pξ(2n)q2n+1 = q3
f812f

2
48

f46 f
5
24

− q9ω(−q12) + q
f58

f2f6f216
. (27)
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Dividing (27) by q and replacing q2 by q in the resulting identity and in (26),
we obtain (23) and (24).

The next theorem exhibits the 3-dissection of (2).

Theorem 2 We have

∞∑
n=0

pξ(3n)qn =
f2f

4
3

f21 f
2
6

, (28)

∞∑
n=0

pξ(3n+ 1)qn = 2
f3f6
f1

, and (29)

∞∑
n=0

pξ(3n+ 2)qn = ω(q) +
f46
f2f23

. (30)

Proof In view of (8), we rewrite (6) as

∞∑
n=0

pξ(n)qn = q2ω(q3) +
ψ(q)2

f6
.

Using (21), we obtain

∞∑
n=0

pξ(n)qn = q2ω(q3) +
f6f

4
9

f23 f
2
18

+ 2q
f9f18
f3

+ q2
f418
f6f29

. (31)

Extracting the terms of the form q3n+r on both sides of (31), for r ∈ {0, 1, 2},
dividing both sides of the resulting identity by qr and then replacing q3 by q,
we obtain the desired results.

We close this section with the 4-dissection of (2).

Theorem 3 We have

∞∑
n=0

pξ(4n)qn = 4q2
f612
f23 f

3
6

− q2ω(−q3) +
f42 f

5
6

f21 f
4
3 f

2
12

, (32)

∞∑
n=0

pξ(4n+ 1)qn = 2q
f36 f

2
12

f43
+ 2

f44 f
5
6

f22 f
4
3 f

2
12

, (33)

∞∑
n=0

pξ(4n+ 2)qn =
f96

f63 f
2
12

+
f102 f212
f41 f

2
3 f

4
4 f6

, and (34)

2

∞∑
n=0

pξ(4n+ 3)qn+1 =
f156
f83 f

6
12

− f(q6) + 4q
f42 f

2
12

f21 f
2
3 f6

. (35)
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Proof In order to prove (32), we use (13) and (18) to obtain the even part of
(24), which is given by

∞∑
n=0

pξ(4n)q2n = 4q4
f624
f26 f

3
12

− q4ω(−q6) +
f44 f

5
12

f22 f
4
6 f

2
24

.

Replacing q2 by q we obtain (32).
Using (13) and (18) we can extract the odd part of (23):

2

∞∑
n=0

pξ(4n+ 1)q2n+1 = 4q3
f312f

2
24

f46
+ 4q

f48 f
5
12

f24 f
4
6 f

2
24

.

After simplifications we arrive at (33).
Next, extracting the odd part of (24) with the help of (13) and (18) yields

∞∑
n=0

pξ(4n+ 2)q2n+1 = q
f912
f66 f

2
24

+ q
f104 f224

f42 f
2
6 f

4
8 f12

,

which, after simplifications, gives us (34).
In order to obtain (35), we use (13) and (18) in (23) to extract its even

part:

2

∞∑
n=0

pξ(4n+ 3)q2n+2 =
f1512
f86 f

6
24

− f(q12) + 4q2
f44 f

2
24

f22 f
2
6 f12

.

Replacing q2 by q in this identity, we obtain (35).

4 Arithmetic properties of pξ(n)

Our first observation provides a characterization of pξ(3n) (mod 4).

Theorem 4 For all n ≥ 0, we have

pξ(3n) ≡


1 (mod 4), if n = 0,

2 (mod 4), if n is a square,

0 (mod 4), otherwise.

Proof By (28), using (9) and the fact that f4k ≡ f22k (mod 4) for all k ≥ 1, it
follows that

∞∑
n=0

pξ(3n)qn =
f2f

4
3

f21 f
2
6

≡ f2
f21

=
f21 f2
f41
≡ f21
f2

= φ(−q) (mod 4).

By (7), we obtain

∞∑
n=0

pξ(3n)qn ≡
∞∑

n=−∞
(−1)nqn

2

≡ 1 + 2

∞∑
n=1

qn
2

(mod 4),

which completes the proof.
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Theorem 4 yields an infinite family of Ramanujan–like congruences modulo
4.

Corollary 1 For all primes p ≥ 3 and all n ≥ 0, we have

pξ(3(pn+ r)) ≡ 0 (mod 4),

if r is a quadratic nonresidue modulo p.

Proof If pn+ r = k2, then r ≡ k2 (mod p), which contradicts the fact that r
is a quadratic nonresidue modulo p.

Since gcd(3, p) = 1, among the p − 1 residues modulo p, we have p−1
2

residues r for which r is a quadratic nonresidue modulo p. Thus, for instance,
the above corollary yields the following congruences:

pξ(9n+ 6) ≡ 0 (mod 4),

pξ(15n+ k) ≡ 0 (mod 4), for k ∈ {6, 9},
pξ(21n+ k) ≡ 0 (mod 4), for k ∈ {9, 15, 18},
pξ(33n+ k) ≡ 0 (mod 4), for k ∈ {6, 18, 21, 24, 30}.

Theorem 5 For all n ≥ 0, we have

pξ(3n+ 1) ≡

{
2 (mod 4), if 3n+ 1 is a square,

0 (mod 4), otherwise.

Proof From Theorem 2,

∞∑
n=0

pξ(3n+ 1)qn = 2
f3f6
f1

. (36)

So we only need to consider the parity of

f3f6
f1

.

Note that

f3f6
f1
≡ f33
f1

=

∞∑
n=0

a3(n)qn (mod 2),

where a3(n) is the number of 3-core partitions of n (see [10, Theorem 1]).
Thanks to [8, Theorem 7], we know that

a3(n) ≡

{
1 (mod 2), if 3n+ 1 is a square,

0 (mod 2), otherwise.

This completes the proof.

Theorem 5 yields an infinite family of congruences modulo 4.
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Corollary 2 For all primes p > 3 and all n ≥ 0, we have

pξ(3(pn+ r) + 1) ≡ 0 (mod 4),

if 3r + 1 is a quadratic nonresidue modulo p.

Proof If 3(pn + r) + 1 = k2, then 3r + 1 ≡ k2 (mod p), which would be a
contradiction with 3r + 1 being a quadratic nonresidue modulo p.

For example, the following congruences hold for all n ≥ 0 :

pξ(15n+ k) ≡ 0 (mod 4), for k ∈ {7, 13},
pξ(21n+ k) ≡ 0 (mod 4), for k ∈ {10, 13, 19},
pξ(33n+ k) ≡ 0 (mod 4), for k ∈ {7, 10, 13, 19, 28}.

We next turn our attention to the arithmetic progression 4n + 2 to yield
an additional infinite family of congruences.

Theorem 6 For all n ≥ 0, we have

pξ(4n+ 2) ≡

{
2 (mod 4), if n = 6k(3k ± 1),

0 (mod 4), otherwise.

Proof From (34), we obtain

∞∑
n=0

pξ(4n+ 2)qn ≡ f76
f23 f

2
12

+
f212
f23 f6

≡ 2
f36
f23
≡ 2f26 ≡ 2f12 (mod 4). (37)

Using Euler’s identity (see [9, Eq. (1.6.1)])

f1 =

∞∑
n=−∞

(−1)nqn(3n−1)/2, (38)

we obtain

∞∑
n=0

pξ(4n+ 2)qn ≡ 2

∞∑
n=−∞

(−1)nq6n(3n−1) (mod 4),

which concludes the proof.

Theorem 6 yields an infinite family of congruences modulo 4.

Corollary 3 Let p > 3 be a prime and r an integer such that 2r + 1 is a
quadratic nonresidue modulo p. Then, for all n ≥ 0,

pξ(4(pn+ r) + 2) ≡ 0 (mod 4).

Proof If pn+r = 6k(3k±1), then r ≡ 18k2±6k (mod p). Thus, 2r+1 ≡ (6k±
1)2 (mod p), which contradicts the fact that 2r + 1 is a quadratic nonresidue
modulo p.
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Thanks to Corollary 3, the following example congruences hold for all n ≥
0 :

pξ(20n+ j) ≡ 0 (mod 4), for j ∈ {6, 14},
pξ(28n+ j) ≡ 0 (mod 4), for j ∈ {6, 10, 26},
pξ(44n+ j) ≡ 0 (mod 4), for j ∈ {14, 26, 34, 38, 42},
pξ(52n+ j) ≡ 0 (mod 4), for j ∈ {10, 14, 22, 30, 38, 42}.

We now provide a mod 8 characterization for pξ(3n).

Theorem 7 For all n ≥ 0, we have

pξ(3n) ≡


1 (mod 8), if n = 0,

6(−1)k (mod 8), if n = k2,

4 (mod 8), if n = 2k2, n = 3k2, or n = 6k2,

0 (mod 8), otherwise.

Proof By (28), using (7) and (9), we have

∞∑
n=0

pξ(3n)qn =
f61 f2f

4
3

f81 f
2
6

≡
(
f21
f2

)3(
f23
f6

)2

≡ φ(−q)3φ(−q3)2

≡

( ∞∑
n=−∞

(−1)nqn
2

)3( ∞∑
n=−∞

(−1)nq3n
2

)2

≡

(
1 + 2

∞∑
n=1

(−1)nqn
2

)3(
1 + 2

∞∑
n=1

(−1)nq3n
2

)2

(mod 8)

which yields

∞∑
n=0

pξ(3n)qn ≡ 1 + 6

∞∑
n=1

(−1)nqn
2

+ 4

( ∞∑
n=1

(−1)nqn
2

)2

+ 4

∞∑
n=1

(−1)nq3n
2

+ 4

( ∞∑
n=1

(−1)nq3n
2

)2

(mod 8).

Since ( ∞∑
n=1

(−1)nqn
2

)2

≡
∞∑
n=1

q2n
2

(mod 2),

we have ( ∞∑
n=1

(−1)nq3n
2

)2

≡
∞∑
n=1

q6n
2

(mod 2).
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Therefore
∞∑
n=0

pξ(3n)qn ≡ 1 + 6

∞∑
n=1

(−1)nqn
2

+ 4

∞∑
n=1

q2n
2

+ 4

∞∑
n=1

(−1)nq3n
2

+ 4

∞∑
n=1

q6n
2

(mod 8),

which completes the proof.

As with the prior results, Theorem 7 provides an effective way to yield an
infinite family of congruences modulo 8.

Corollary 4 Let p be a prime such that p ≡ ±1 (mod 24). Then,

pξ(3(pn+ r)) ≡ 0 (mod 8),

if r is a quadratic nonresidue modulo p.

Proof Since p ≡ ±1 (mod 8) and p ≡ ±1 (mod 12), it follows that 2 and 3 are
quadratic residues modulo p. Thus, r, 2r, 3r, and 6r are quadratic nonresidues
modulo p. Indeed, according to the properties of Legendre’s symbol, for j ∈
{1, 2, 3, 6}, we have (

jr

p

)
=

(
j

p

)(
r

p

)
=

(
r

p

)
= −1.

It follows that we cannot have 3(pn + r) = jk2, for some k ∈ N and j ∈
{1, 2, 3, 6}. In fact, 3(pn+r) = jk2 would imply 3(pn+r) ≡ 3r ≡ jk2 (mod p).
However, for j = 1, 2, 3, 6, this would imply that 3r, 6r, r, or 2r, respectively,
is a quadratic residue modulo p, which would be a contradiction since 2, 3, and
6 are quadratic residues modulo p. The result follows from Theorem 7.

As an example, we note that, for p = 23 and all n ≥ 0, we have

pξ(69n+ k) ≡ 0 (mod 8), for k ∈ {15, 21, 30, 33, 42, 45, 51, 57, 60, 63, 66}.

Theorem 8 For all n ≥ 0, we have

pξ(12n+ 4) ≡ pξ(3n+ 1) (mod 8).

Proof Initially we use (14) to extract the odd part on both sides of (29). The
resulting identity is

∞∑
n=0

pξ(6n+ 4)qn = 2
f23 f

2
4 f24

f21 f8f12
. (39)

Using (15) in (39), we obtain

∞∑
n=0

pξ(12n+ 4)qn = 2
f62 f3f6
f51 f

2
4

= 2
f31 f

6
2 f3f6
f81 f

2
4

≡ 2
f3f6
f1

(mod 8).

The result follows using (29).
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Now we present complete characterizations of pξ(48n+ 4) and pξ(12n+ 1)
modulo 8.

Theorem 9 For all n ≥ 0, we have

pξ(48n+ 4) ≡ pξ(12n+ 1) ≡

{
2(−1)k (mod 8), if n = k(3k ± 1),

0 (mod 8), otherwise.

Proof The first congruence follows directly from Theorem 8. Replacing (14)
in (29), we obtain

∞∑
n=0

pξ(3n+ 1)qn = 2
f4f

2
6 f16f

2
24

f22 f8f12f48
+ 2q

f26 f
2
8 f48

f22 f16f24
.

Extracting the terms of the form q2n, we have

∞∑
n=0

pξ(6n+ 1)q2n = 2
f4f

2
6 f16f

2
24

f22 f8f12f48
,

which, after replacing q2 by q, yields

∞∑
n=0

pξ(6n+ 1)qn = 2
f2f

2
3 f8f

2
12

f21 f4f6f24
. (40)

Now we use (15) to obtain

∞∑
n=0

pξ(12n+ 1)qn = 2
f32 f

4
6

f41 f
2
12

≡ 2f2 ≡ 2

∞∑
n=−∞

(−1)nqn(3n−1) (mod 8), (by (38))

which completes the proof.

Theorem 9 also provides an effective way to yield an infinite family of
congruences modulo 8.

Corollary 5 For all primes p > 3 and all n ≥ 0, we have

pξ(48(pn+ r) + 4) ≡ pξ(12(pn+ r) + 1) ≡ 0 (mod 8),

if 12r + 1 is a quadratic nonresidue modulo p.

Proof Let p > 3 be a prime and 12r + 1 a quadratic nonresidue modulo
p. If pn + r = k(3k ± 1), then r ≡ 3k2 ± k (mod p), which implies that
12r+1 ≡ (6k±1)2 (mod p), a contradiction. The result follows from Theorem
9.
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5 Additional congruences

In this section, we prove several additional Ramanujan–like congruences that
are not included in the results of the previous section.

Theorem 10 For all n ≥ 0, we have

pξ(24n+ 19) ≡ 0 (mod 3), (41)

pξ(27n+ 18) ≡ 0 (mod 3), and (42)

pξ(72n+ 51) ≡ 0 (mod 3). (43)

Proof Using (15) we can now 2-dissect (40) to obtain

∞∑
n=0

pξ(6n+ 1)qn = 2
f34 f

4
12

f42 f
2
24

+ 4q
f6f

2
8 f12
f32

,

from which we have

∞∑
n=0

pξ(12n+ 7)q2n+1 = 4q
f6f

2
8 f12
f32

.

Now, dividing both sides of the above expression by q and replacing q2 by q,
we obtain

∞∑
n=0

pξ(12n+ 7)qn = 4
f3f

2
4 f6
f31

. (44)

Using (17) we rewrite (44) as

∞∑
n=0

pξ(12n+ 7)qn = 4
f84 f

4
6

f92 f
2
12

+ 12q
f44 f

2
6 f

2
12

f72
.

Taking the odd parts on both sides of the last equation, we are left with

∞∑
n=0

pξ(24n+ 19)qn = 12
f42 f

2
3 f

2
6

f71
,

which proves (41).
In order to prove (42), we use (22) to extract the terms of the form q3n of

(28). The resulting identity is

∞∑
n=0

pξ(9n)q3n =
f26 f

6
9

f43 f
3
18

,
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which, after replacing q3 by q and using (8), yields

∞∑
n=0

pξ(9n)qn =
f22 f

6
3

f41 f
3
6

≡ f22 f
5
3

f1f36
= ψ(q)

f53
f36

(mod 3).

By (8), we have

∞∑
n=0

pξ(9n)qn ≡ f53
f36

∞∑
n=0

qn(n+1)/2 (mod 3).

Since n(n+ 1)/2 6≡ 2 (mod 3) for all n ≥ 0, all terms of the form q3n+2 in the
last expression have coefficients congruent to 0 (mod 3), which proves (42).

We now prove (43). Replacing (22) in (28) and extracting the terms of the
form q3n+2, we obtain

∞∑
n=0

pξ(9n+ 6)q3n+2 = 4q2
f318
f23

. (45)

Dividing both sides of (45) by q2 and replacing q3 by q, we have

∞∑
n=0

pξ(9n+ 6)qn = 4
f36
f21
. (46)

Now we use (11) to extract the odd part of (46) and obtain

∞∑
n=0

pξ(18n+ 15)qn = 8
f22 f

3
3 f

2
8

f51 f4
.

Since f31 ≡ f3 (mod 3), we have

∞∑
n=0

pξ(18n+ 15)qn ≡ 2
f22 f

2
3 f

2
8

f21 f4
(mod 3).

Using (15) we obtain

∞∑
n=0

pξ(36n+ 15)qn ≡ 2
f32 f3f4f

2
6

f31 f12
(mod 3).

Since the odd part of (17) is divisible by 3, then the coefficients of the terms
of the form q2n+1 in

∑∞
n=0 pξ(36n+ 15)qn are congruent to 0 modulo 3. This

completes the proof of (43).

We now prove a pair of unexpected congruences modulo 5 satisfied by
pξ(n).

Theorem 11 For all n ≥ 0, we have

pξ(45n+ 33) ≡ 0 (mod 5), (47)

pξ(45n+ 42) ≡ 0 (mod 5). (48)



Congruences for the coefficients of ξ(q) 15

Proof By (46), we have

∞∑
n=0

pξ(9n+ 6)qn = 4
f36
f21

= 4
f31 f

3
6

f51
≡ 4

f31 f
3
6

f5
(mod 5).

Thanks to Jacobi’s identity (10) we know

f31 f
3
6 =

∞∑
j,k=0

(−1)j+k(2j + 1)(2k + 1)q3j(j+1)+k(k+1)/2.

Note that, for all integers j and k, 3j(j + 1) and k(k + 1)/2 are congruent to
either 0, 1 or 3 modulo 5. The only way to obtain 3j(j+1)+k(k+1)/2 = 5n+3
is the following:

– 3j(j + 1) ≡ 0 (mod 5) and k(k + 1)/2 ≡ 3 (mod 5), or
– 3j(j + 1) ≡ 3 (mod 5) and k(k + 1)/2 ≡ 0 (mod 5).

Thus, j ≡ 2 (mod 5) or k ≡ 2 (mod 5) in all possible cases, and this means

(2j + 1)(2k + 1) ≡ 0 (mod 5).

Therefore, for all n ≥ 0, pξ(45n+ 33) = pξ(9(5n+ 3) + 6) ≡ 0 (mod 5), which
is (47).

In order to complete the proof of (48), we want to see when

3j(j + 1) + k(k + 1)/2 = 5n+ 4.

Four possible cases arise:

– k ≡ 1 (mod 5) and j ≡ 2 (mod 5),
– k ≡ 3 (mod 5) and j ≡ 2 (mod 5),
– j ≡ 1 (mod 5) and k ≡ 2 (mod 5), or
– j ≡ 3 (mod 5) and k ≡ 2 (mod 5).

In all four cases above, either j ≡ 2 (mod 5) or k ≡ 2 (mod 5). So

(2j + 1)(2k + 1) ≡ 0 (mod 5)

in all these cases. Therefore,

pξ(45n+ 42) = pξ(9(5n+ 4) + 6) ≡ 0 (mod 5),

which completes the proof of (48).

Next, we prove three congruences modulo 8 which are not covered by the
above results.

Theorem 12 For all n ≥ 0, we have

pξ(16n+ 14) ≡ 0 (mod 8), (49)

pξ(24n+ 13) ≡ 0 (mod 8), (50)

pξ(24n+ 22) ≡ 0 (mod 8). (51)
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Proof Initially we prove (49). From (34) and (7) we have

∞∑
n=0

pξ(4n+ 2)qn ≡ f23 f
5
6

f212
+

f212
f23 f6

φ(q)2 (mod 8).

Now we can use (11), (12), and (20) to extract the terms involving q2n+1 from
both sides of the previous congruence:

∞∑
n=0

pξ(8n+ 6)q2n+1 ≡ −2q3
f66 f

2
48

f212f24
+ 2q3

f104 f412f
2
48

f42 f
6
6 f

4
8 f24

+ 4q
f48 f

2
12f

5
24

f24 f
6
6 f

2
48

(mod 8).

After dividing both sides by q and then replacing q2 by q, we are left with

∞∑
n=0

pξ(8n+ 6)qn ≡ −2q
f63 f

2
24

f26 f12
+ 2q

f102 f46 f
2
24

f41 f
6
3 f

4
4 f12

+ 4
f44 f

2
6 f

5
12

f22 f
6
3 f

2
24

≡ −2q
f63 f

2
24

f26 f12
+ 2q

f63 f
4
6 f

2
24

f123 f12
+ 4

f44 f
5
12

f22 f6f
2
24

≡ 4
f34 f12
f6

(mod 8),

whose odd part is congruent to 0 modulo 8, which implies (49).
In order to prove (50), we use (15) to obtain the even part of identity (40),

which is

∞∑
n=0

pξ(12n+ 1)qn = 2
f32 f

4
6

f41 f
2
12

.

Now, employing (13), we obtain the odd part of the last identity, which is

∞∑
n=0

pξ(24n+ 13)qn = 8
f22 f

4
3 f

4
4

f71 f
2
6

,

which implies (50).
Now we prove (51). We employ (15) in (39) to obtain

∞∑
n=0

pξ(12n+ 10)qn = 4
f32 f

2
3 f

2
12

f41 f
2
6

. (52)

By (12) and (13), we rewrite (52) in the form

∞∑
n=0

pξ(12n+ 10)qn = 4
f32 f

2
12

f26

(
f144
f142 f48

+ 4q
f24 f

4
8

f102

)(
f6f

5
24

f212f
2
48

− 2q3
f6f

2
48

f24

)
,

from which we obtain

∞∑
n=0

pξ(24n+ 22)q2n+1 = 4
f32 f

2
12

f26

(
−2q3

f144 f6f
2
48

f142 f48 f24
+ 4q

f24 f6f
4
8 f

5
24

f102 f212f
2
48

)
.
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Dividing both sides by q and replacing q2 by q, we are left with

∞∑
n=0

pξ(24n+ 22)qn = −8q
f142 f26 f

2
24

f111 f3f44 f12
+ 16

f22 f
4
4 f

5
12

f71 f3f
2
24

,

which implies (51).

We close this section by proving a congruence modulo 9.

Theorem 13 For all n ≥ 0, we have

pξ(96n+ 76) ≡ 0 (mod 9). (53)

Proof We use (21) to extract the terms of the form q3n+1 from (32). The
resulting identity is

∞∑
n=0

pξ(12n+ 4)q3n+1 = 2q
f66 f9f18
f53 f

2
12

,

which, after dividing by q and replacing q3 by q, yields

∞∑
n=0

pξ(12n+ 4)qn = 2
f62 f3f6
f51 f

2
4

= 2
f62 f6
f24

f3
f1

1

f41
.

Using (13) and (14), we extract the even part on both sides of the above
identity to obtain

∞∑
n=0

pξ(24n+ 4)qn = 2
f132 f23 f8f

2
12

f101 f54 f6f24
+ 8q

f23 f
6
4 f24

f61 f8f12

≡ 2
f132 f8f

2
12

f54 f6f24

1

f1f3
+ 8q

f64 f24
f8f12

f31
f3

(mod 9).

Now we employ (18) and (16) to extract the odd part on both sides of the last
congruence:

∞∑
n=0

pξ(48n+ 28)qn ≡ 2
f91 f6f12
f33 f4

+ 8
f92 f12
f4f26

≡ f6f12
f4

(mod 9),

which implies (53).
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6 Concluding remarks

Computational evidence indicates that pξ(n) satisfies many other congruences.
The interested reader may wish to consider the following two conjectures.

Conjecture 1

∞∑
n=0

pξ(8n+ 3)qn ≡ 2

∞∑
n=0

q3n(n+1)/2 (mod 3)

Conjecture 2

∞∑
n=0

pξ(32n+ 12)qn ≡ 6

∞∑
n=0

q3n(n+1)/2 (mod 9)

Clearly, once proven, Conjectures 1 and 2 would immediately lead to in-
finite families of Ramanujan–like congruences. Morever, Conjecture 2 would
immediately imply Theorem 13 since 96n + 76 = 32(3n + 2) + 12 while the
right–hand side of Conjecture 2 is clearly a function of q3. The same argument
would imply that, for all n ≥ 0,

pξ(96n+ 44) ≡ 0 (mod 9)

since 96n+ 44 = 32(3n+ 1) + 12.
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