
 1 Copyright © 2020 ASME 

 
Proceedings of the ASME 2020  

International Design Engineering Technical Conferences  
and Computers and Information in Engineering Conference  

IDETC/CIE2020  
August 17-19, 2020, Virtual, Online 

 

 
DETC2020-22399 

GENERATIVE ADVERSARIAL NETWORKS WITH SYNTHETIC TRAINING DATA FOR 
ENFORCING MANUFACTURING CONSTRAINTS ON TOPOLOGY OPTIMIZATION 

 

Michael Greminger1 
University of Minnesota Duluth 

Duluth, MN 

ABSTRACT 
Topology optimization is a powerful tool to generate 

mechanical designs that use minimal mass to achieve their 

function. However, the designs obtained using topology 

optimization are often not manufacturable using a given 

manufacturing process. There exist some modifications to the 

traditional topology optimization algorithm that are able to 

impose manufacturing constraints for a limited set of 

manufacturing methods. These approaches have the drawback 

that they are often based on heuristics to obtain the 

manufacturability constraint and thus cannot be applied 

generally to multiple manufacturing methods. In order to create 

a general approach to imposing manufacturing constraints on 

topology optimization, generative adversarial networks (GANs) 

are used. GANs have the capability to produce samples from a 

distribution defined by training data. In this work, the GAN is 

trained by generating synthetic 3D voxel training data that 

represent the distribution of designs that can be created by a 

particular manufacturing method. Once trained, the GAN forms 

a mapping from a latent vector space to the space of 

manufacturable designs. The topology optimization is then 

performed on the latent vector space ensuring that the design 

obtained is manufacturable. The effectiveness of this approach 

is demonstrated by training a GAN on designs intended to be 

manufacturable on a 3-axis computer numerically controlled 

(CNC) milling machine. 

Keywords: Topology optimization, design for 

manufacturability, deep learning, manufacturing constraints, 

generative adversarial networks 

 

1. INTRODUCTION 
Topology optimization is a powerful tool for creating 

efficient designs that minimize material usage [1]. While 

topology optimization can generate an optimal design for a 

 
1 Contact author: mgreming@d.umn.edu 

particular loading, the designs that result are often not 

manufacturable using conventional manufacturing methods. 

There exist modifications to traditional topology optimization 

algorithms that can impose manufacturing constraints, such as 

symmetry or pull direction, but these approaches are not 

generalizable to other manufacturing methods [2, 3]. There is a 

need for a general approach to imposing manufacturing 

constraints on topology optimization that can handle a large 

variety of manufacturing methods. Generative adversarial 

networks (GANs) are a potential method to achieve this goal due 

to their ability to approximate a distribution of multidimensional 

input data used during training [4]. GANs have been shown to 

be able to generate realistic images of faces and other objects. 

GANs have also been extended to 3D objects using a voxel 

representation [5]. 

Generative approaches to design are not new and this work 

builds on these previous approaches. A proven approach to 

generative design is to use a grammar defined parametric model 

approach with stochastic optimization as described by Shea et al. 

[6]. This approach generates efficient designs but it is best suited 

to frame structures or to objects manufactured using flexible 

manufacturing methods such as 3D printing. Another successful 

approach described by Matejka et al. [7] builds upon existing 

topology optimization approaches by varying the parameters of 

the topology optimization such as voxel size, load distribution, 

and target volume. These variations result in a large family of 

thousands of potential designs. The innovation with this 

approach is how the designs are presented to the user in a way to 

aid in design selection. Manufacturing constraints can be a way 

to curate the designs generated by this approach, but the designs 

are not constrained to be manufacturable by any particular 

manufacturing method during the generation process. 

Additionally, GANs have been explored has a means to generate 

designs. Oh et al. [8] presented working show GANs generating 



 2 © 2020 by ASME 

2D wheel designs for automotive applications. The present work 

builds on this effort by extending it to 3D and by adding 

manufacturing constraints to the generated designs. 

The GAN structure consists of two neural networks (see Fig. 

1), a generator and a discriminator. A generator takes a latent 

vector and converts it through a series of convolution and 

Figure 1: GAN structure is a 3D implementation of MSG-GAN and is used to approximate the distribution of the solid models used to train 

the GAN.  



 3 © 2020 by ASME 

upsampling layers to create a voxel model. The discriminator, 

which consists of convolutional and downsampling layers, 

classifies an input voxel model as either real or fake where fake 

means that the image was an output of the generator network. 

The generator and discriminator networks are trained together 

with the optimization metric for the generator being to fool the 

discriminator and the optimization metric for the discriminator 

being to correctly identify the images created by the generator 

network as fake. Given a sufficient level of complexity of the 

generator and discriminator networks, GANs have been shown 

to be able to create synthetic images that appear to be real to the 

human eye even though they are different from all of the training 

data that was used. Once a GAN has been trained, the generator 

creates a mapping between the latent vector space and the 

distribution of images that it was trained on. It has been shown 

that the latent vector space can be mapped to certain 

characteristics in the generated images such as pose or facial 

expressions for GANs trained on faces. 

Training GANs requires a large training data set that 

represents the distribution to be approximated by the GAN. 

Obtaining an adequate training set can be challenging. In this 

paper, we propose using a synthesized training set to represent 

the distribution of the set of geometries that can be manufactured 

by a given manufacturing technique. The advantages of this 

approach are that a large quantity of training data can be 

generated and desired manufacturability criteria can be precisely 

specified. For the purposes of demonstrating the technique, the 

manufacturing method used here is 3-axis CNC machining from 

a single direction. However, this approach can be extended to 

other manufacturing processes by generating the appropriate 

synthetic training set. 

Once a GAN is trained that can map from the latent vector 

space to the manufacturable design space, topology optimization 

can be performed to find the latent vector that results in an 

optimal design. Compliance minimization subject to a target 

volume constraint is the case that will tested here, however, other 

optimization problems could be solved as well. The performance 

of the proposed algorithm will be compared to a traditional 

topology optimization algorithm for compliance minimization 

subject to a target volume constraint. 

This paper will have the following structure. The Methods 

section will describe the structure of the GAN, the procedure 

used to generate the training data, the training of the GAN, and 

the implementation of the traditional topology optimization 

algorithm and the proposed GAN-based topology optimization 

algorithm. The Results section will show the performance of the 

proposed topology optimization algorithm as compared to the 

traditional topology optimization algorithm. Finally, the 

Conclusions section will summarize the results and discuss the 

next steps of this line of research. 

 

2. METHODS 
The implementation of the GAN topology optimization 

algorithm requires implementing a 3D GAN in order to train a 

generator that is able to map from a latent vector space to a 

manufacturable 3D model space. In order to train the GAN, a 

synthetic dataset is generated that spans the manufacturable 

design space. Finally, the traditional topology optimization 

algorithm is modified to use the GAN generator latent space as 

the feature space rather than element densities directly. The 

remainder of this section describes the methods used to 

implement the GAN, to generate the training data, and to 

implement the GAN topology optimization algorithm.  

 

2.1 GAN Structure 
Generative Adversarial Networks are relatively new with 

Goodfellow et al. [4] first introducing the technique in 2014. 

Since this initial work, much work has gone into extending and 

improving the initial implementation. The current GANs that 

generate high quality results leverage some sort of deep 

convolutional structure that was popularized by Radford et al. 

[9]. The network structure used for this work is a 3D extension 

of the 2D multi-scale gradient structure (MSG-GAN) introduced 

by Karnewar et al. [10] (see Fig. 1). The generator portion of the 

GAN takes the latent vector as input and uses combinations of 

upsampling and 3D convolution operations to produce the output 

voxel set. For the results presented here, a 32x32x32 cube of 

voxels was used to represent the geometry. The discriminator 

structure uses a combination of 3D convolution and average pool 

downsampling operations to reduce the spatial size of the voxel 

data until a fully connected layer is used on the final layer to 

produce a scalar result with a positive value indicating that the 

discriminator has determined the input voxels to be real and a 

negative value indicating that the discriminator has determined 

the input voxels to be fake. The MSG-GAN structure introduces 

connections between the generator and the discriminator at 

multiple scales (see Fig. 1) to create stronger gradients at all 

levels of the GAN making training more stable and less sensitive 

to the choice of hyperparameters. 

Numerous error loss functions have been proposed for 

training GANs [11]. Examples include the minmax loss 

suggested in the original GAN paper and least squares loss 

functions [12]. As recommended in the MSG-GAN paper, hinge 

loss [13] was used for the GAN implementation presented here 

for training robustness. The hinge loss function can be expressed 

as: 

 

Hinge Loss =  ∑ 𝑚𝑎𝑥(0,1 − 𝑦𝑖̂ × 𝑦𝑖)𝑛
𝑖=1             (1) 

 

where 𝑦̂ is the output of the discriminator, 𝑦 is the target output, 

and 𝑛 is the number of training examples. The target value 𝑦 

depends on whether the discriminator or generator is being 

trained. When training the discriminator, to goal is to classify the 

solids generated by the generator as fake (𝑦 = −1) and real 

solids from the training distribution that is being approximated 

as real (𝑦 = 1). When training the generator, the goal is to fool 

the discriminator into finding the generated solids real, so 𝑦 = 1, 

even though the solids are actually fake. In general, when 

training the discriminator, the weights of the generator are held 

fixed. Likewise, when training the generator, the discriminator 

weights are held fixed. Training alternates between training the 

discriminator and the generator. 



 4 © 2020 by ASME 

 The training of a GAN can be viewed as a competition 

between the discriminator and the generator where the generator 

is trying to generate solid models that fool the discriminator into 

thinking they are real and the discriminator trying to successfully 

identify the fake solid models created by the generator as fake. 

As training progresses, if successful, the discriminator gets better 

at detecting fakes and the generator gets better at creating fakes. 

However, the training of GANs can be difficult and it does not 

always result in a generator that can produce realistic results. 

One of the issues that can occur is the discriminator getting too 

good at determining fakes and not allowing the generator to 

make progress during training. The hinge loss function (1) has 

the benefit that it saturates at zero once the discriminator can 

perfectly identify fake and real solid models. Once saturated, the 

discriminator no longer updates since there is a loss of the 

gradient from the loss to the discriminator weights during the 

training. This loss of gradient allows the generator to catch up to 

the discriminator to increase the stability of the training. It was 

found that the combination of MSG-GAN and hinge loss resulted 

in a GAN training approach that was successful without 

hyperparameter tuning. 

For the training results presented below, 20000 training 

models were used. The GAN was trained for 500 epochs using 

batch size of 𝑛 = 50. This training took approximately 23 days 

of computation time using data parallelism on dual Nvidia Tesla 

K20X GPUs. The PyTorch library was used to implement the 

GAN [14]. The training time is long but it should be noted that 

this only needs to be done once for a particular manufacturing 

method. Once the GAN is trained, the GAN based topology 

optimization problem can be solved with computational costs 

that are similar to traditional topology optimization. 

 
2.2 Synthetic Training Data 

In order to train the GAN generator to produce 

manufacturable solid models, a large training set that spans the 

space of manufacturable designs is required. One means to 

obtain such a set of manufacturable designs is to collect existing 

solid models that are manufacturable by the selected 

manufacturing method. The issue with this approach is that it is 

difficult to obtain training sets that are large enough to 

successfully train the GAN. A second issue is that there may be 

few or no examples of models that are manufacturable by a new 

or a highly industry specific manufacturing technique. A final 

limitation may be the issue of intellectual property of the models 

that are used to train the model. Because of these limitations, the 

approach that will be used here will be to generate synthetic 

training data to represent the set of manufacturable designs.  

In order to efficiently generate a large number of random 

designs, a scripting approach is used to generate the 

manufacturable solid models. The solid models are then 

converted to a voxel representation compatible with the GAN 

structure. The open-source CadQuery solid modeling library 

[15] is used to create the models. The CadQuery library is written 

in Python and is based off of the PythonOCC library [16], which 

is a Python wrapper for the Open CASCADE solid modeling 

library [17]. CadQuery provides a means to create complex solid 

models directly in Python. The models can then be exported as 

step or STL files. In order to train the GAN, a voxel 

representation of the solid is needed. The Trimesh library [18] is 

used to convert the STL file format to the CGAL OFF file format 

and the Python bindings to the CGAL [19,20] project are used to 

generate the voxels. CGAL is used because of its computational 

efficiency, which is essential for the large number of training 

examples that need to be generated. 

The training examples generated for this present study are 

intended to be machined by a 3-axis vertical milling machine 

with a single setup. However, this approach is intended to be able 

to be applied to any desired manufacturing process. Fig. 2 shows 

an example of a solid model that includes the features that are 

used in the randomly generated data sets. These features include 

blind pockets, through pockets, slots, step downs, and through 

holes (not show). The existence, location, size, and orientation 

of these features are randomized. The base part is either an L-

shape as shown or a rectangle. For both cases, the length and 

width proportion and thickness are randomized. In all, there are 

17 random binary choices that determine whether certain 

features exist or not and the properties of those features (through 

pocket or not, for example). Finally, depending on the features 

included in each model, up to 51 dimensions, or other parameters 

such as feature angles or radii, are randomized.  

 

 
Figure 2: Example of the features used in the randomly generated 

geometry for the training sets. 

After the training solid model examples are generated, they 

are voxelated at 4x4x4, 8x8x8, 16x16x16, and 32x32x32 scales. 

The four scales are needed for the multi-scale GAN structure 

described above. Before voxelization, the models are scaled to 

fill a unit cube. The position of the model within the cube is 

randomized in the three x, y, and z axes within the range of 

values that will ensure that the model will fit entirely within the 

cube. In addition, the models are randomly mirrored about the x, 

y, and z planes as well as randomly rotated 90 or 0 degrees about 

the x, y, and z axes. This ensures that the GAN is able to generate 

models independent of the machining direction relative to the 

part. Fig. 3 shows the four voxel scales for the solid model shown 

in Fig. 2. Fig. 4 shows four examples from the 20000 voxel 

model representations that were used to train the GAN for the 

results obtained in this paper.  



 5 © 2020 by ASME 

 
Figure 3: Multi-scale voxel representations generated from the solid 

model shown in Fig. 2. 

 
Figure 4: Four examples of training voxel sets used to train the GAN 

for the results presented in this paper. 

After training the GAN using the 20000 training models for 

500 epochs with a batch size of 50, 20 random models generated 

using the generator are shown in Fig. 5. These examples were 

obtained by randomly sampling the latent vector space of the 

generator using a normal distribution. These results were not 

curated and are the first 20 samples randomly obtained. It can be 

seen from Fig. 5 that the generator is starting to approximate the 

type of models used for training (see Fig. 4). However, there are 

some artifacts in some of the models and the models are not as 

clean as the training models. The results may be improved with 

further training of the GAN. However, as will be shown below, 

the model obtained to this point is sufficient to produce 

manufacturable results for the topology optimization problem. 

 

2.3 Implementation the Generative Network Topology 
Optimization Algorithm 

There are numerous formulations of the topology 

optimization problem including compliance minimization, 

maximum stress constraints, and natural frequency 

maximization (see [1]). In general, the generative approach to 

topology optimization that is presented here could be applied to 

any of these problem formulations. For the results presented in 

this paper, the minimum compliance design formulation is used. 

In minimum compliance design, the mechanical compliance of 

the design is minimized while ensuring that the total mass is 

below a specified target. The mass target is usually specified as 

a percentage of the mass of the entire design. Minimum 

compliance design provides a design that maximizes stiffness for 

a given mass target. The minimum compliance optimization 

problem can be formulated as [1]: 

 

minimize
𝒙

 𝑐(𝒙) =
𝟏

𝟐
𝒖𝑻𝑲(𝒆)𝒖

subject to
𝑉(𝒙)

𝑉0
≤ 𝑣𝑓

𝒆 = 𝐸(𝒙)
𝑲(𝒆)𝒖 = 𝒇
𝟎 ≤ 𝒙 ≤ 𝟏

                   (2) 

 
where 𝒙 is the vector of element densities 𝑥𝑒, 𝑐(𝒙) is the 

compliance of the structure (𝑐(𝒙) can also be interpreted as the 

strain energy stored in the structure), 𝒖 is the vector of nodal 

displacements of the finite element model and 𝒇 is the vector of 

nodal forces, 𝑲(𝒆) is the global stiffness matrix, 𝒆 is the vector 

of element modulus values calculated from the element density 

vector 𝒙 using the function 𝐸 as described below, 𝑉(𝒙) is the 

volume of the model and 𝑉𝑜 is the volume of the model domain, 

and 𝑣𝑓 is the target volume fraction. In order to construct the 

global stiffness matrix 𝑲 the element densities 𝑥𝑒 need to be 

converted to element elastic modulus values 𝑒𝑒. The solid 

isotropic material with penalization (SIMP) approach, as 

modified by Sigmund [21], will be used to calculate the element 

elastic moduli. The SIMP calculation of element elastic moduli 

can be expressed as: 

 

𝒆 = 𝐸(𝒙) = 𝐸𝑚𝑖𝑛 + 𝒙𝑝(𝐸0 − 𝐸𝑚𝑖𝑛)            (3) 

 
where 𝐸0 is the elastic modulus of the material, 𝐸𝑚𝑖𝑛 is the 

minimum allowed elastic modulus to provide numerical stability 

of the finite element analysis, and 𝑝 is a penalization factor. For 

the traditional topology optimization results included here, 

values of 𝐸𝑚𝑖𝑛 = 1 × 10−6 and 𝑝 = 3 were used. The SIMP 

calculation acts as a means to penalize element densities that are 

not close to 1 or 0, thus minimizing physically unrealizable 

partial density elements in the optimized model. 



 6 © 2020 by ASME 

In order to solve the minimization problem (2), a numerical 

approach needs to be used. Typically a gradient based 

constrained optimization approach is used [1]. The conservative 

convex separable approximations (CCSA) method of moving 

asymptotes (MMA) proposed by Svanberg [22] was used since 

it is well suited to problems with a large number of design 

variables (32768 variables for the 32x32x32 design space) and a 

large number of inequality constraints that are characteristic of 

topology optimization problems. The NLopt implementation of 

the CCSA algorithm was used for the results presented here [23]. 

In order to apply a gradient based minimization algorithm, the 

sensitivity, or gradient, of the compliance function to the element 

densities needs to be computed with each element of the gradient 

represented as 𝜕𝑐/𝜕𝑥𝑒. Using the chain rule for multiple 

dimensions, the elements of the compliance gradient with respect 

to the element densities can be expressed as: 

 
𝜕𝑐

𝜕𝑒𝑒
= ∑

𝜕𝑐

𝜕𝑢𝑖

𝜕𝑢𝑖

𝜕𝑒𝑒
  3𝑛

𝑖=1                          (4) 

 
where there are 𝑛 nodes in the finite element mesh (there are 3𝑛 

components of nodal displacements for the three dimensions) 

and the elements of the gradient of the displacement with respect 

to the element densities can be expressed as: 

 

𝜕𝑢𝑖

𝜕𝑒𝑒
= ∑  

𝜕𝐾𝑖𝑗
−1

𝜕𝑒𝑒
𝑓𝑗  𝑚

𝑗=1                          (5) 

 

where there are 𝑚 elements and since 𝒖 = 𝑲−1𝒇 as a solution 

the linear system of equations that define the finite element 

problem in (2). Equation (5) assumes that the force vector 𝑓 is 

Figure 5: Output of the GAN after 500 training epochs. 



 7 © 2020 by ASME 

not a function of the element densities. It should be noted that 

the force vector 𝒇 may become of a function of the element 

densities when there are non-zero displacement boundary 

conditions and the boundary conditions are applied in the 

standard way [24] to ensure the stiffness matrix 𝑲 remains 

symmetric. Throughout this work, only zero displacement 

boundary conditions are used so (5) will hold. In general, the 

partial derivative of the matrix inverse can be expressed as [25]: 

 
𝜕𝑨−1

𝜕𝑦
= −𝑨−1 𝜕𝑨

𝜕𝑦
𝑨−1                         (6) 

 

substituting (5) and (6) into (4) yields: 

 
𝜕𝑐

𝜕𝐸𝑒
= ∑

𝜕𝑐

𝜕𝑢𝑖
∑ (−𝑲−1 𝜕𝑲

𝜕𝑒𝑒
𝑲−1)

𝑖𝑗
𝑓𝑗

𝑚
𝑗=1   3𝑛

𝑖=1     (7) 

 

Putting (7) into matrix form and noting that 𝑲−1𝒇 is simply the 

displacement vector 𝒖 yields the following expression for the 

components of the compliance gradient with respect to the 

element elastic moduli: 

 
𝜕𝑐

𝜕𝑒𝑒
= (∇𝒖𝑐)𝑇(−𝑲−1) (

𝜕𝑲

𝜕𝑒𝑒
) 𝒖            (8) 

 

where the gradient of 𝑐 with respect to 𝑢 is defined as: 

 

(∇𝒖𝑐)𝑇 = [𝜕𝑐/𝜕𝑢1 𝜕𝑐/𝜕𝑢2 … 𝜕𝑐/𝜕𝑢𝑛]  (9) 
 

Since the gradient component defined by (8) is a scalar, the right-

hand side of (8) can be transposed without changing the result. 

This resulting form allows for a simplification later: 

 

 
𝜕𝑐

𝜕𝑒𝑒
= −𝒖𝑻 (

𝜕𝑲

𝜕𝑒𝑒
)

𝑇
(𝑲−1)(∇𝒖𝑐)            (10) 

 

Notice that in general the inverse of the stiffness matrix is 

needed to calculate the gradient of the compliance with respect 

to the element elastic moduli. In order to solve for the nodal 

displacements, it was required solve the linear equation 𝑲𝒖 = 𝒇. 

However, in general, the inverse of the stiffness matrix is not 

directly computed due to the size of the problems involved. For 

structural problems, 𝑲 is a sparse matrix. However, 𝑲−1 is a 

dense matrix so it is not practical to store the inverse for the size 

of problems that are typical for structural problems. Because of 

this, the quantity (𝑲−1)(∇𝒖𝑐) is computed by solving the 

equation 𝑲𝒚 = ∇𝒖𝑐. The minimum residual iteration method 

for sparse systems [26], as implemented in the SciPy Python 

library [27], is used to solve these linear systems. Therefore, two 

solves of linear systems of equations are required for each 

iteration of the topology optimization problem.  

For the specific case where compliance is used as the 

objective function as in (2), equation (10) simplifies so that the 

second solve of the finite element problem is no required. Since 

c is a quadratic form, and taking advantage of symmetry of 𝑲 for 

structural problems, the gradient of the compliance with respect 

to the nodal displacements becomes [25]: 

 

∇𝒖𝑐 = ∇𝒖 (
1

2
𝒖𝑇𝑲𝒖) = (𝑲 + 𝑲𝑇)𝒖 = 2𝑲𝒖    (11) 

 

Substituting (11) into (10) results in the following equation: 

 

𝜕𝑐

𝜕𝑒𝑒
= −2𝒖𝑻 (

𝜕𝑲

𝜕𝑒𝑒
)

𝑇

𝒖                      (12) 

 

This elimination of the inverse of the stiffness matrix from 

the equation for the components for the gradient of compliance 

with respect the element elastic moduli is one of the reasons that 

compliance is so commonly used as an objective function for 

topology optimization problems. Equation (12) will be used for 

the present work but in general equation (10) needs to be used 

for the gradient computation for objective functions other than 

compliance minimization. 

Up until this point, equation (12) applies for the traditional 

topology optimization problem and the GAN topology 

optimization problem. The two approaches differ in computing 

the gradient of compliance with respect to the design variables. 

For the traditional topology optimization problem, the design 

variables are the element densities 𝑥𝑒. For the GAN topology 

optimization problem, the design variables are the components 

of latent vector space vector 𝑧𝑙. Again, using the multi-

dimension chain rule, the gradient with respect to the element 

density design variables is: 

  
𝜕𝑐

𝜕𝑥𝑖
= ∑

𝜕𝑐

𝜕𝑒𝑗

𝜕𝑒𝑗

𝜕𝑥𝑖
  𝑚

𝑗=1                           (13) 

 
where there are m elements in the design volume. For the 

traditional topology optimization case, the partials of the element 

elastic moduli with respect to the element densities can be 

computed from the SIMP calculation (3): 

 
𝜕𝑒

𝜕𝑥𝑖
= 𝑝𝑥𝑖

𝑝−1(𝐸0 − 𝐸𝑚𝑖𝑛) for 𝑖 = 𝑗

𝜕𝑒𝑗

𝜕𝑥𝑖
= 0 for 𝑖 ≠ 𝑗 

          (14) 

 

Substituting (14) and (12) into (13) yields: 

 

𝜕𝑐

𝜕𝑥𝑒
= −2𝑝𝑥𝑒

𝑝−1(𝐸0 − 𝐸𝑚𝑖𝑛)𝒖𝑻 (
𝜕𝑲

𝜕𝑒𝑒
)

𝑇

𝒖   (15) 

 

where 𝜕𝑲/𝜕𝑒𝑒 is the element stiffness matrix for element 𝑒 with 

unit elastic modulus. Equation (15) is the commonly used 

compliance minimization sensitivity function that can be found 

in the literature [28]. If (15) is used directly for the traditional 

topology problem, the results will exhibit the checkerboard 

pattern issue where portions of the resulting geometry will have 



 8 © 2020 by ASME 

alternating full and zero density elements. This checkerboarding 

is generally undesirable since it results in geometries that are not 

manufacturable. To prevent checkerboard patterns in the 

traditional topology optimization results, a commonly used 

sensitivity filtering heuristic is used that locally smooths the 

gradient to prevent the checkboard pattern. The sensitivity 

filtering equation provided in [28] is used with a filter radius of 

two times the element size.  

To convert the traditional topology optimization algorithm 

into the proposed GAN-based approach, the optimization 

problem needs to be performed using the latent feature vector as 

the design variable rather than the element densities. To this end, 

the GAN topology optimization problem can be expressed as: 

 

minimize
𝒛

 𝑐(𝒛) =
𝟏

𝟐
𝒖𝑻𝑲(𝒆)𝒖

subject to
𝑉(𝐺(𝒛))

𝑉0
≤ 𝑣𝑓

𝒆 = 𝐸𝑜𝐺(𝒛)
𝑲(𝒆)𝒖 = 𝒇
−𝟔 ≤ 𝒛 ≤ 𝟔

                (16) 

 

where 𝒛 is the latent feature vector and G is the generator 

network from the trained GAN that maps from the latent vector 

to the element densities. For the GAN topology optimization 

implementation, equation (13) becomes: 

 
𝜕𝑐

𝜕𝑧𝑖
= ∑

𝜕𝑐

𝜕𝑒𝑗

𝜕𝑒𝑗

𝜕𝑧𝑖
=  𝑚

𝑗=1 𝐸0 ∑
𝜕𝑐

𝜕𝑒𝑗

𝜕𝐺(𝒛)

𝜕𝑧𝑖
  𝑚

𝑗=1        (17) 

 

For the GAN-based approach, the element densities 𝑥𝑒 are 

output from the GAN generator neural network for a particular 

latent vector input 𝒛. The output of the GAN is then multiplied 

by 𝐸0 and clamped between 𝐸𝑚𝑖𝑛 and 𝐸0 to ensure valid elastic 

modules values. The gradient components of the GAN generator 

function with respect to the latent vector components 𝑧𝑙, 

𝜕𝐺(𝒛)/𝜕𝑧𝑖, are obtained using the automatic differentiation 

capabilities of the PyTorch machine learning framework [14] 

since PyTorch was used to implement the GAN. Two advantages 

in using the GAN generator to determine the element densities is 

that the SIMP equation is not needed since the GAN naturally 

produces element densities that are near zero or one and the 

sensitivity filtering to prevent the checker board pattern is not 

required for the cases tested here. 

The NLopt implementation of the sequential least-squares 

quadratic programming algorithm (SLSQP) proposed by Kraft 

[26, 27] is used to find the latent feature vector that minimizes 

the compliance of the structure subject to the target volume 

fraction constraint. The SLSQP algorithm is used since it has 

better convergence properties than the CCSA algorithm for 

optimization problems with fewer variables. In this case, the 

latent vector is of size 128 compared to 32768 variables for the 

traditional topology optimization algorithm. Each of the latent 

design variables is limited to be in the range of -6 to 6 using 

inequality constraints. Since samples from the standard normal 

distribution with a standard deviation of one were used to 

generate the latent vectors while training the GAN, limiting the 

components of the latent vector to this range is equivalent to 

limiting the latent vector to be within six standard deviations of 

the zero latent vector. 

Before the GAN topology optimization is performed, the 

latent space vector components 𝑧𝑙 are initialized to create a solid 

that fills the volume. This is done by maximizing the volume 

fraction. This optimization is stopped when the volume fraction 

hits 0.95. This initialization of the latent vector has been found 

to provide better performance in the GAN topology optimization 

algorithm as compared to initializing the latent vector to the zero 

vector. 

  

3. RESULTS AND DISCUSSION 
In order to solve the topology optimization problem, a load 

and fixed boundary conditions need to be applied to the design 

space volume. Fig. 6 shows the two load cases that were tested. 

The target volume fraction used for the topology optimization is 

set to 0.4 for both the traditional topology optimization case and 

the GAN topology optimization case. 

 

 
Figure 6: The two load cases used to evaluate the proposed topology 

optimization problem. Load Case 1 on the left and Load Case 2 on the 

right. 

Fig. 7 shows the results of applying the traditional 

compliance minimization approach to the load cases shown in 

Fig. 6. Figs. 8 and 9 show the orthographic views of the solutions 

obtained using the traditional topology optimization algorithm. 

The machinability was assessed using an occlusion metric that 

determines the fraction of unreachable voxels for the machining 

processes. The Appendix includes a description of how the 

metric is calculated and a visualization of the unreachable 

volume during machining for each of the examples. Table 1 

gives the compliance number achieved for each of the load cases 

(lower is better) and the volume fraction of unreachable material 

during machining (lower is better). The design obtained for Load 

Case 1 has 18% of the material than cannot be reached for 

marching due to the shape of the design obtained. There is not 

an obvious way to modify this design to obtain a design that can 

easily be machined using a single 3-axis machining setup. 

 



 9 © 2020 by ASME 

 
Figure 7: Traditional compliance minimization topology optimization 

solution for Load Case 1 on the left and Load Case 2 on the right. 

 

 
Figure 8: Orthographic views of topology optimization solution for 

Load Case 1 using the traditional algorithm. 

 
Figure 9: Orthographic views of topology optimization solution for 

Load Case 2 using the traditional algorithm. 

 

Figs. 10, 11 and 12 show the solution obtained using the 

GAN implementation of the topology optimization algorithm. 

For both cases, less than 5% of the volume is unreachable for the 

machining operation (see Table 1).  

The volume constraint for the GAN topology optimization 

problem (15) requires passing the latent vector through the GAN 

generator network. This makes the volume constraint more 

complicated than that of the traditional topology optimization 

problem (1), which has a linear mapping between the element 

densities and the total volume. The more complicated volume 

constraint function does impact the convergence rate of the GAN 

topology optimization algorithm as compared to the traditional 

topology optimization algorithm (see Fig. 13). This results in 

optimization times that are longer for the GAN approach as 

compared to the traditional approach. This convergence issue of 

the GAN approach could be eliminating if one of the components 

of the latent vector could be used to specify the desired target 

density. With this approach, the volume constraint could more 

easily be satisfied potentially improving the convergence 

characteristics of the optimization problem. This approach of 

appending parameters to the latent vector to constrain the output 

of the GAN was first introduced by Mirza et al. using an 

approach called Conditional GANs [31]. 

 

 
Figure 10: GAN topology optimization solution for Load Case 1 on the 

left and Load Case 2 on the right. 

 



 10 © 2020 by ASME 

 
Figure 11: Orthographic views for GAN topology solution for Load 

Case 1. 

 
Figure 12: Orthographic views for GAN topology solution for Load 

Case 2. 

Table 1: Quantitative comparison between the traditional approach to 

topology optimization compared to the proposed GAN approach. 

 

Compliance 

Fraction of 

Unmachinable Voxels 

Load Case Traditional GAN Traditional GAN 

1 7.63 7.98 .183 .044 

2 49.16 49.75 .101 .039 

 

 
Figure 13: Topology optimization convergence comparison between the 

traditional topology optimization algorithm and the GAN topology 

optimization algorithm for Load Case 1. 

4. CONCLUSION 
The results from the previous section show that a GAN can 

be successfully trained to generate models that can be 

manufactured by a specific manufacturing process. The 

generator from this trained GAN can then be used with the 

topology optimization algorithm outlined above to ensure that 

the designs that are generated are manufacturable. The 

performance of the manufacturable design was only slightly 

reduced from the design obtained by the traditional algorithm. 

However, the GAN generated designs shown in Fig. 10 could 

not be obviously derived from the result of the traditional 

topology optimization algorithm shown in Fig. 7. In this way, 

the proposed GAN topology optimization algorithm generates 

designs that could not be obtained by existing methods.   

 Future work will include implementing the Conditional 

GAN algorithm to allow the target volume to be used as an 

input to the generator, as discussed in the previous section, to 

improve the convergence characteristics of the GAN-based 

approach. Additionally, the GAN will be trained for other 

manufacturing processes such as injection molding in order to 

show the general applicability of the GAN-based approach. 

Finally, a longer-term goal will be to speed up the training of 

the GAN for new manufacturing methods. The GAN presented 

here took 23 days to train, which will limit the adoption of this 

approach. One approach to speed up the training may be to use 

Conditional GANs to not only specify the target volume but to 

also specify the desired manufacturing process. This would 

allow one GAN to be trained to generated models for multiple 

manufacturing processes at once. 

 

ACKNOWLEDGEMENTS 
The author acknowledges the Minnesota Supercomputing 

Institute (MSI) at the University of Minnesota for providing 

resources that contributed to the research results reported within 

this paper. URL: http://www.msi.umn.edu 



 11 © 2020 by ASME 

 
REFERENCES 
[1] Bendsoe, M. P., and Sigmund, O., 2003, Topology 

Optimization: Theory, Methods, and Applications, Springer 

Science & Business Media. 

[2] Liu, J., and Ma, Y., 2016, “A Survey of Manufacturing 

Oriented Topology Optimization Methods,” Adv. Eng. 

Softw., 100, pp. 161–175. 

[3] Zuo, K.-T., Chen, L.-P., Zhang, Y.-Q., and Yang, J., 2006, 

“Manufacturing- and Machining-Based Topology 

Optimization,” Int. J. Adv. Manuf. Technol., 27(5–6), pp. 

531–536. 

[4] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., 

Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y., 

2014, “Generative Adversarial Nets,” Advances in Neural 

Information Processing Systems 27, Z. Ghahramani, M. 

Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger, 

eds., Curran Associates, Inc., pp. 2672–2680. 

[5] Wu, J., Zhang, C., Xue, T., Freeman, B., and Tenenbaum, J., 

2016, “Learning a Probabilistic Latent Space of Object 

Shapes via 3D Generative-Adversarial Modeling,” 

Advances in Neural Information Processing Systems 29, 

D.D. Lee, M. Sugiyama, U.V. Luxburg, I. Guyon, and R. 

Garnett, eds., Curran Associates, Inc., pp. 82–90. 

[6] Shea, K., Aish, R., and Gourtovaia, M., 2005, “Towards 

Integrated Performance-Driven Generative Design Tools,” 

Autom. Constr., 14(2), pp. 253–264. 

[7] Matejka, J., Glueck, M., Bradner, E., Hashemi, A., 

Grossman, T., and Fitzmaurice, G., 2018, “Dream Lens: 

Exploration and Visualization of Large-Scale Generative 

Design Datasets,” Proceedings of the 2018 CHI Conference 

on Human Factors in Computing Systems, ACM, New 

York, NY, USA, pp. 369:1–369:12. 

[8] Oh, S., Jung, Y., Kim, S., Lee, I., and Kang, N., 2019, “Deep 

Generative Design: Integration of Topology Optimization 

and Generative Models,” J. Mech. Des., 141(11). 

[9] Radford, A., Metz, L., and Chintala, S., 2016, 

“Unsupervised Representation Learning with Deep 

Convolutional Generative Adversarial Networks,” 

ArXiv151106434 Cs. 

[10] Karnewar, A., Wang, O., and Iyengar, R. S., 2019, “MSG-

GAN: Multi-Scale Gradient GAN for Stable Image 

Synthesis,” ArXiv190306048 Cs Stat. 

[11] Dong, H.-W., and Yang, Y.-H., 2019, “Towards a Deeper 

Understanding of Adversarial Losses,” ArXiv190108753 

Cs Stat. 

[12] Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., and Paul 

Smolley, S., 2017, “Least Squares Generative Adversarial 

Networks,” Proceedings of the IEEE International 

Conference on Computer Vision, pp. 2794–2802. 

[13] Tran, D., Ranganath, R., and Blei, D., 2017, “Hierarchical 

Implicit Models and Likelihood-Free Variational 

Inference,” Advances in Neural Information Processing 

Systems 30, I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, 

R. Fergus, S. Vishwanathan, and R. Garnett, eds., Curran 

Associates, Inc., pp. 5523–5533. 

[14] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., 

Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., 

Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., 

Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., 

and Chintala, S., 2019, “PyTorch: An Imperative Style, 

High-Performance Deep Learning Library,” Advances in 

Neural Information Processing Systems 32, H. Wallach, H. 

Larochelle, A. Beygelzimer, F. Alché-Buc, E. Fox, and R. 

Garnett, eds., Curran Associates, Inc., pp. 8024–8035. 

[15] 2020, CadQuery/Cadquery, CadQuery. 

[16] Paviot, T., 2020, Tpaviot/Pythonocc-Core. 

[17] “Overview | OPEN CASCADE” [Online]. Available: 

https://www.opencascade.com/content/overview. 

[Accessed: 19-Jan-2020]. 

[18] Dawson-Haggerty, M., 2020, Mikedh/Trimesh. 

[19] The CGAL Project, 2020, CGAL User and Reference 

Manual, CGAL Editorial Board. 

[20] 2020, CGAL/Cgal-Swig-Bindings, The CGAL Project. 

[21] Sigmund, O., 2007, “Morphology-Based Black and White 

Filters for Topology Optimization,” Struct. Multidiscip. 

Optim., 33(4–5), pp. 401–424. 

[22] Svanberg, K., 2002, “A Class of Globally Convergent 

Optimization Methods Based on Conservative Convex 

Separable Approximations,” SIAM J. Optim., 12(2), pp. 

555–573. 

[23] Johnson, S. G., The NLopt Nonlinear-Optimization 

Package, http://github.com/stevengj/nlopt. 

[24] Huebner, K. H., Dewhirst, D. L., Smith, D. E., and Byrom, 

T. G., 2001, The Finite Element Method for Engineers, John 

Wiley & Sons. 

[25] Petersen, K. B., and Pedersen, M. S., 2012, “The Matrix 

Cookbook. Version: Nov. 15 2012.” 

[26] Paige, C. C., and Saunders, M. A., 1975, “Solution of Sparse 

Indefinite Systems of Linear Equations,” SIAM J. Numer. 

Anal., 12(4), pp. 617–629. 

[27] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., 

Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., 

Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., 

Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., 

Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, 

Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., 

Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., 

Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van 

Mulbregt, P., and Contributors, S. 1 0, 2019, “SciPy 1.0--

Fundamental Algorithms for Scientific Computing in 

Python,” ArXiv190710121 Phys. 

[28] Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B. 

S., and Sigmund, O., 2011, “Efficient Topology 

Optimization in MATLAB Using 88 Lines of Code,” Struct. 

Multidiscip. Optim., 43(1), pp. 1–16. 

[29] Kraft, D., 1988, “A Software Package for Sequential 

Quadratic Programming,” Forschungsbericht- Dtsch. 

Forsch.- Vers. Luft- Raumfahrt. 

[30] Kraft, D., 1994, “Algorithm 733: TOMP–Fortran Modules 

for Optimal Control Calculations,” ACM Trans. Math. 

Softw. TOMS, 20(3), pp. 262–281. 



 12 © 2020 by ASME 

[31] Mirza, M., and Osindero, S., 2014, “Conditional Generative 

Adversarial Nets,” ArXiv Prepr. ArXiv14111784. 

[32] Hoefer, M. J., and Frank, M. C., 2018, “Automated 

Manufacturing Process Selection During Conceptual 

Design,” J. Mech. Des., 140(3). 

 

APPENDIX 
Each of the following figures (Figs. 14-17) show the 

material that cannot be removed from the optimal designs 

(highlighted in red) obtained by the traditional topology 

optimization algorithm (Figs. 14 and 15) and the proposed GAN 

topology optimization algorithm (Figs. 16 and 17). This 

unreachable material is shown in red. In the evaluation of the 

machinability of each design, all six machining directions were 

considered (±x, ±y, and ±z directions) and the direction with the 

smallest fraction of unreachable voxels is taken as the 

machinability metric. A voxel is considered unreachable for a 3-

axis machining operation if it is occluded by voxels when viewed 

from the machining direction. This approach is inspired by the 

machinability criteria proposed by Hoefer et al. [32]. 

 

 
Figure 14: Orthographic views of topology optimization solution for 

Load Case 1 using the traditional algorithm. 18.3% of the void voxels 

cannot be removed by a 3-axis machining operation. 

 
Figure 15: Orthographic views of topology optimization solution for 

Load Case 2 using the traditional algorithm. 10.1% of the void voxels 

cannot be removed by a 3-axis machining operation. 

 
Figure 16: Orthographic views for GAN topology solution for Load 

Case 1. 4.4% of the void voxels cannot be removed by a 3-axis 

machining operation. 



 13 © 2020 by ASME 

 
Figure 17: Orthographic views for GAN topology solution for Load 

Case 2. 3.9% of the void voxels cannot be removed by a 3-axis 

machining operation. 

 


