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Abstract

This paper presents a method to model the deformation of
an elastic object with an artificial neural network. The
neural network is trained directly from images of the elas-
tic object deforming under known loads. Using this pro-
cess, models can be created for objects such as biologi-
cal tissues that cannot be modeled by existing techniques.
The neural network elastic model is used in conjunction
with a deformable template matching algorithm to perform
vision-based force measurement (VBFM). We demonstrate
this learning method on objects with both linear and non-
linear elastic properties.

1. Introduction

The ability to manipulate deformable objects has many im-
portant application areas particularly in the bioengineering
and biomedical domains. Examples include the manipula-
tion of biological cells and robotic surgery. When manipu-
lating deformable objects, it is often useful to have knowl-
edge of the force applied to the object in order to prevent
damage. If vision feedback is available for observing ob-
ject deformations, this feedback can be used to estimate the
force applied to these objects. This technique is referred to
as vision-based force measurement (VBFM).

It has been shown that if an accurate model is available
that defines the elastic behavior of an object, then the force
applied to that object can be measured using computer vi-
sion [2][10]. Three cases exist in which this explicit model
based approach is not appropriate. The first case is for ma-
terials that exhibit nonlinear elastic properties in which it is
computationally prohibitive to calculate the model in real-
time. This situation occurs when there are large deflections
or the stress-strain relationship for the material is nonlinear.
A second case occurs when an accurate material model is
unavailable for an object. Some examples are biological
structures such as cells and organs. The third situation is
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when a model is available for the object, but the parame-
ters that define the model, such as material properties or
geometry, are not known or are known to a low certainty.

For all three of these cases a trainable neural network
model approach to VBFM is preferable. Figure 1 illus-
trates our neural network modeling approach to VBFM. A
sequence of images is taken under various loading condi-
tions. This sequence of images is then passed to the neu-
ral network training algorithm. Once the neural network
model is trained, it can then be used to measure forces from
new images.

2. Neural Network Elastic Material
Model

Feed-forward two layer neural networks with the layout
shown in Figure 2 are used. Each hidden node has a lo-
gistic sigmoid activation function of the form

1
9(a) = 1+ exp(—a)

where a is the sum of all of the weighted inputs to the node.
The output nodes have a linear activation function that re-
turns the sum of all of the node’s weighted inputs. The
neural network is represented in equation form by

> wij‘| 2

where the neural network has D inputs, P hidden nodes,
and NV outputs. The hidden layer weights are stored in the
v matrix and the output layer weights are stored in the w
matrix. Neural networks of this type have the property that
they are universal approximators, meaning that the neural
network can approximate a general nonlinear function to
arbitrary accuracy provided that there are a sufficient num-
ber of hidden nodes [6].
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Figure 1: Diagram illustrating the learning approach to vision-based force measurement.
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Figure 2: Neural network diagram.

The neural network elastic model presented in this pa-
per inputs a point (z, y) from within the object and the load
F applied to the object and returns the deformed location
(z',3") of the input point. This process is shown Figure 3
for the two dimensional case. For this case, the neural net-
work has three inputs and two outputs. If more than one
load is being applied to the object, additional inputs can be
added to the neural network. A neural network model con-
structed in this manner completely defines the deformation
of an elastic object subject to an applied load F.

3. Neural Network Based Deformable
Template Matching Algorithm

In order for the neural network elastic model to be useful
for computer vision applications, it must be incorporated
into a deformable template matching algorithm. The de-
formable template models both the rigid body portion of an
object’s motion and the object’s deformation due to applied
loads.

The deformable template is registered to a binary edge
image [1] using a least square error measure. The template
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Figure 3: Process of using a neural network elastic model
to calculate an object’s deformation due to an applied load
F.

is represented by a list of 2D vertices T'; and the edge pix-
els in the current image are represented by the list of 2D
vertices I;. The registration algorithm minimizes the dis-
tance squared between the transformed template vertices
T/ and the nearest image edge vertices I; where the tem-
plate vertices are transformed by an elastic transformation
and a rigid body transformation.

3.1. The Rigid Body Portion of the Template
Matching Algorithm

The rigid body portion of the transformation of the template
vertices is simply an affine transformation given by

T; = A(T;) )
A is defined by
cosf) —sinf
A(T) =X+ [ sinf  cosf } @)

where 6 is the angle of rotation and X is the translation
vector. The error function between the transformed tem-



plate vertices T’ and the image vertices I, can be written
as

2

M
E@0,X)=) |T; -1 ®)
j=1

where T;- is the position vector of the ith edge pixel of the
template transformed by (3); I; is the position vector of
the edge pixel in the image that is closest to the point T;.;
and M is the number of edge pixels in the template. This
error function sums the square of the distance between each
template vertex and the nearest image edge pixel. Since the
transformed template vertices T;- were transformed by the
affine transform A, E will be a function of § and X. By
minimizing F, the values of # and X that best match the
image in a least squares sense will be found.

The error function E is minimized by a gradient-based
multi-variable minimization technique called the Broydon-
Fletcher-Goldfarb-Shanno (BFGS) method [9].

3.2. Incorporating Deformations into the

Template Matching Algorithm

Minimizing (5) determines the rigid body motion of the ob-
ject. We would also like to determine the non-rigid portion
of the object’s motion. To do this, the template is deformed
according to the neural network elastic model before per-
forming the affine transformation. The transformation be-
comes

T’ = A (NeuralNetwork(T, F)) (6)

where NeuralNetwork(T, F') represents the neural net-
work material model which returns the displaced location
for the template edge pixel T due to the applied force F' on
the object. The error function (5) becomes

M
E(0.X,F)=3_|T; - LI’ @)
i=1
Since the error function (6) has an additional parameter
F, minimizing the error function gives the applied force
F' in addition to the position and orientation of the object.
This algorithm tracks the deformable object by finding the
applied force F' that, when applied to the template, causes
the template to match the image.

4. Acquisition of Training Data and
Network Training

As previously shown, the neural network elastic model has
three inputs and two outputs. The inputs are the x-y coor-
dinates of a point in the undeformed body and the applied
load on the body. The outputs are the x-y coordinates of
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the same point in the deformed body. Therefore, in order
to train the neural network, it is necessary to obtain train-
ing pairs that consist of the x-y coordinate of a point in
the undeformed body and the force applied to the body and
the x-y coordinate of the same point in the deformed body.
Many such points are needed to adequately train the neural
network. These training pairs also need to be obtained for
many force values over the range of expected loads.

4.1. Obtaining Training Data

The training data pairs are obtained directly from images
of the object under known loads. Using this approach, a
neural network model of the object is created without using
an explicit material model for the object.

A computer vision algorithm is required that can mea-
sure the displacement of a point within an elastic body. A
deformable body tracking algorithm is used for this pur-
pose. There are many available deformable body tracking
algorithms [4][7][12]. In order for a tracking algorithm to
be useful for acquiring training data, it must be invariant to
rigid body motions and it must provide a unique tracking
solution. Many of the available deformable body tracking
algorithms cannot be used here because they do not pro-
vide the ability to uniquely determine where a given point
moves within a body. Active contour models (snakes) [5]
provide a way to track deformable objects but they do not
provide a way to uniquely determine where a point in an
object moves in a subsequent image. Snakes also have the
problem that the rigid body motions are not separated from
the deformation of the object. The non-uniqueness prob-
lem occurs because the snakes algorithm is not based on
an actual material model. A unique tracking solution can
be obtained if we use a deformable object tracking algo-
rithm that has knowledge of how materials deform. Two
approaches that make use of material models include finite
element method (FEM) based algorithms [7] and bound-
ary element method (BEM) based algorithms [3]. We use
the BEM deformable body tracking algorithm described in
[3], because this algorithm is invariant to rigid body mo-
tions and provides a unique solution to the deformable body
tracking problem.

The BEM method differs from the FEM method in the
way the body is partitioned to solve the partial differential
equations that define the elasticity problem. For the FEM
method the entire domain that defines the object is parti-
tioned into elements (see Figure 4). The BEM method only
requires that the boundary of the object is partitioned. Be-
cause the BEM method only partitions the boundary of the
object, it is more natural for use in computer vision prob-
lems where the boundary of the object is often all that is
visible. Because the BEM deformable object tracking al-
gorithm makes use of the equations of elasticity, it tracks
a deformable contour uniquely. The left half of Figure 5
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Figure 4: FEM and BEM meshes for a two dimensional
object.

Figure 5: BEM deformable tracking algorithm tracking the
rubber torus object. Undeformed template on left and tem-
plate fitted to deformed torus on right.

shows a deformed rubber torus under a known load along
with an undeformed BEM deformable object template. The
right half of this figure shows the BEM template matched
to the deformed rubber torus. This process is repeated for
all of the images used to train the neural network elastic
model. The training images should represent the range of
loads that are likely to be encountered by the object. Figure
6 shows the training data obtained using the BEM track-
ing algorithm for the rubber torus object. In the figure, the
same edge points are shown for the undeformed torus, the
torus under a 0.613 N load and the torus under a 1.222 N
load. When these point deformations are obtained for a suf-
ficient number of different loads, they are used to train the
neural network elastic model.

4.2. Training the Neural Network

The neural network is trained using the error back-
propagation method [6]. The success of the training pro-
cess depends on the number of training pairs that are used
and the number of hidden nodes in the neural network
model. If there are not a sufficient number of training data
pairs, the network may model the training data well, but it
will not be able to perform well for new loads that were
not part of the training data. Also, if there are not a suffi-
cient number of hidden nodes, the neural network will not
be able to model the elastic object to a high degree of ac-
curacy. However, if there are too many hidden nodes, the
neural network will be able to model the training pairs very
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Figure 6: Training data obtained for the rubber torus object
under two different applied loads.
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Figure 7: Rubber torus loading condition.

well but it may be very inaccurate for loads that were not
part of the training data. This last phenomenon is known as
over-fitting [6]. In general, the more training pairs that can
be used the more accurate the model. The number of hid-
den nodes used should be the minimum number that still
achieves adequate training.

5. Experimental Results
5.1. Rubber Torus Application

The neural network elastic model was first applied to the
rubber torus object shown in Figure 5 with a force applied
as shown in Figure 7. The torus, because it is constructed
of rubber, has nonlinear elastic behavior. Therefore, it is
computationally infeasible to model the elastic behavior of
this object accurately in real-time. A neural network was
trained directly from 39 images of the torus under loads
between 0 and 0.84 N. There were 70 hidden nodes in the
neural network model. Once the training process was com-



Figure 8: Neural network based deformable tracking algo-
rithm tracking the rubber torus object. Undeformed tem-
plate on left and template fitted to deformed torus on right.
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Figure 9: Neural network elastic model force measurement
results for the rubber torus object.

pleted, the neural network elastic model was used to predict
the force applied to the object visually as shown in Figure
8. This figure shows the torus being tracked with the de-
formable template based on the neural network model.

This trained model was applied to 39 images that were
not used in the training process. Figure 9 shows a plot of
vision-based force measurement versus applied load. The
average error in the vision-based force measurement was
10.7 mN.

5.2. Microgripper Application

The neural network modeling method was also applied to
the microgripper shown in Figure 10. The microgripper
was cut by micro-wire EDM from spring steel 254 microns
thick. A tube is slid over the microgripper to force the jaws
of the gripper together in order to grasp an object [11].
When this microgripper is used for a microassembly
task it is important to measure the gripping force that the
microgripper applies to the object being held. Previously,
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Figure 10: Microgripper.
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Figure 11: Experimental setup for measuring microgripper
gripping force.

VBFM was applied to this gripper by modeling each jaw
of the microgripper as a cantilever beam [2]. This model
based approach required precise knowledge of the material
properties and geometric parameters of the microgripper. It
also required a precise calibration of the camera system so
that deflections in pixel space can be converted into world
space deflections. The experimental setup shown in Fig-
ure 11 makes use of a piezoresistive force sensor to mea-
sure the clamping force for the microgripper. Figure 12
shows a plot of force versus clamping tube position com-
paring the cantilever beam model based VBFM method to
the piezoresistive force sensor. The average error with this
model based approach was 6.0 mN.

The neural network modeling approach can be applied
to the microgripper avoiding the need for precise knowl-
edge about the parameters that define the microgripper or
precise camera calibration. Figure 13 shows a plot of force
versus tube position comparing the neural network based
force measurement to the piezoresistive force sensor. The
average error is 3.4 mN. Not only does the neural network
modeling approach avoid having to model the microgrip-
per, but it also provides a more accurate result. The neural
network approach is more accurate in this case because it is
not necessary to assume values for the material properties
and geometry of the microgripper.

6. Conclusions

We have presented a method to model the deformation of
elastic objects through the use of artificial neural networks.
The neural network model can be incorporated into a de-
formable template matching algorithm to perform vision-
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Figure 12: Cantilever beam model based VBFM results for
microgripper showing an average error of 6.0 mN.

based force measurements. This technique is useful for ob-
jects that have complex material models or that can not be
accurately modeled with existing modeling techniques. It
was also shown that this method can be useful even when
there is an available model for the object because the neural
network based method does not require knowledge of ma-
terial properties or geometry. A precisely calibrated cam-
era system is also not needed with the neural network ap-
proach.

This learning by seeing method is particularly useful for
the manipulation of biological tissues or cells because it is
difficult to accurately model such objects. These objects
also tend to be easily damaged if excessive loads are ap-
plied, making force feedback essential.
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