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Abstract—This paper demonstrates a method to visually measure the force distribution applied to a linearly elastic object using the

contour data in an image. The forcemeasurement is accomplished bymaking use of the result from linear elasticity that the displacement

field of the contour of a linearly elastic object is sufficient to completely recover the force distribution applied to the object. This result

leads naturally to a deformable template matching approach where the template is deformed according to the governing equations of

linear elasticity. An energyminimization method is used to match the template to the contour data in the image. This technique of visually

measuring forces we refer to as vision-based force measurement (VBFM). VBFM has the potential to increase the robustness and

reliability of micromanipulation and biomanipulation tasks where force sensing is essential for success. The effectiveness of VBFM is

demonstrated for both a microcantilever beam and a microgripper. A sensor resolution of less than +/- 3 nN for the microcantilever and

+/- 3 mN for the microgripper was achieved using VBFM. Performance optimizations for the energy minimization problem are also

discussed that make this algorithm feasible for real-time applications.

Index Terms—Force measurement, deformable templates, elasticity, nonrigid tracking.

�

1 INTRODUCTION

MICROASSEMBLY is becoming increasingly important be-
cause it enables the creation of MEMS devices

with greater functionality. Through an assembly process,
MEMS devices can be created with three-dimensional
features and can consist of structures createdby incompatible
microfabrication processes. Force sensing is important for
microassembly because the objects involved are often fragile.
Force sensing is also essential for biomanipulation where the
biological cells and tissuesbeinghandledare easilydamaged.
Currently, force measurement at the microscale is usually
done using laser-based optical techniques [10] or using
piezoresistivematerial embedded in an elastic part [14]. Both
of themethodsaredifficult to implementbecause theyrequire
a specially designed elastic part. For example, a laser-based
optical force sensor requires precise alignment of laser optics
withrespect to theelasticpartandapiezoresistiveforcesensor
requires that a piezoresistive layer be embedded within the
partduring itsmanufacture.Vision-basedforcemeasurement
(VBFM) has the advantage that it can be used with existing
elastic parts. It also has the advantage that it makes use of the
microscope optics and cameras that are already present in a
micromanipulation or biomanipulation workstation.

This paper describes a deformable template matching
approach that is used to recover the force applied to an elastic
object, where the template deforms according the governing
equations of elasticity. The deformable template registers to
theCannyedge image[1]ofadeformedobjectusinganenergy
minimization approach. Various optimizations techniques

are applied to the energy minimization that provide the
potential for using VBFM in real-time applications.

The use of elastic models is well established in computer
vision. In 1987, Kass et al. [6] proposed a method to track
contours in an image using a 2D elastic model called a snake.
These snakes had elastic properties and were attracted to
edge features within the image. Metaxas [8] used 3D meshes
with physics-based elastic properties to track both rigid and
nonrigid objects. Yuille et al. [19] used a deformable template
matching algorithm to track facial features. These methods
use elastic models as a tool to locate objects within a scene,
while the approach described in this paper uses elastic
models to extract force information from an image.

Prior work exists in which elastic models are used to
derive force or material property information from images.
Tsap et al. [15] proposed a method to use nonlinear finite
element modeling (FEM) to track nonrigid objects in order to
detect the differences in elasticity between normal and
abnormal skin. They also discussed how their method could
be used for force recovery. Kaneko et al. [5] presented a tactile
sensor that was able to measure forces visually; however,
their algorithmwas limited towire shaped objects. There has
also been work in force measurements at micro and
nanoscales using computer vision. Wang et al. [17] used
Finite Element Modeling (FEM) techniques to derive the
forces that are applied to deformable microparts. Their
method is limited by the need to track each FEMmesh point
in the image. Danuser and Mazza [2] proposed the use of
statistical techniques along with deformable templates to
track very small displacements. They applied their technique
to the measurement of strain in a microbar under tension.
Dong et al. [3] monitored the tip deflection of an AFM
cantilever beam in order to obtain the material properties of
multiwalled carbon nanotubes. The force measurement
algorithm presented here is unique in using contour data
alone, therefore, no feature tracking is required and the
method can be generalized to elastic objects with different
geometries.
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Thispaper is organizedas follows: Section2 formulates the
elasticity problem and concludes by showing how the
Dirichlet to Neumann map can be used to recover the force
distribution applied to an elastic object using the displace-
ment field of the contour. The problem of recovering the
displacement field of the contour of an elastic object is
discussed in Section 3, where it is shown that the recovery of
the contour displacement field can be solved using deform-
able templates. Section 4 formulates the deformable template
matching algorithm for a cantilever beam. The application of
VBFM to a microgripper device is discussed in Section 5.
Section 6 presents performance optimizations used to make
the template matching process more efficient. A concluding
discussion is given in Section 7.

2 LINEAR ELASTICITY THEORY

In this paper,we consider deformable objects that are linearly
elastic. Linear elasticity theory assumes that the object’s
strains are infinitesimal and that the object’s stress-strain
relationship is linear. Both of these assumptions are satisfied
for thematerials to be considered here: silicon and steel. Both
silicon and steel exhibit a linear stress-strain relationship for a
largeworking range and bothwill fail if subject to strains that
are not infinitesimal. We also assume a state of two-
dimensional stress within the object that is referred to as
plane stress.

2.1 The Formulation of the Plane Stress Elasticity
Problem

The plane stress assumption assumes a state of stress where
there is no stress in the x3 direction of an object. Therefore,
the stress components �13, �23, and �33 will have a value of
zero (see Fig. 1). The remaining stress components, �11, �22,
and �12, are functions of x1 and x2 only. Consider the
bounded two-dimensional domain R shown in Fig. 2. It is
assumed that R is defined such that the divergence theorem
applies. Two-dimensional domains where the divergence
theorem applies are those that are bounded by a finite
number of piecewise smooth curves [4] and are known as
normal domains. The elastic body defined by R is governed
by the equations of elasticity which are simplified for the
plane stress case. The equations of elasticity can be
expressed in terms of displacements uðxÞ by [12]:
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where � ¼ 1; 2, � is the shear modulus, and � is the
Poisson’s ratio. The material properties of an isotropic,
elastic material are completely defined by the shear
modulus and the Poisson’s ratio.

The boundary conditions for the elasticity problem can
be expressed as a prescribed displacement vector fi on the
contour C, known as a Dirichlet boundary condition:

uijC ¼ fi ð2Þ

or a prescribed traction vector Ti on C, known as a
Neumann boundary condition:

�ijnjjC ¼ Ti; ð3Þ

wherenj is the outwardunit normal ofC and the stress tensor
�ij can be expressed in terms of displacements by [12]:
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The traction vector is the force per unit length applied to the
contour of the object. It is assumed throughout this discussion
that fi and Ti have piecewise continuous derivatives.

2.2 The Dirichlet to Neumann Map

The Dirichlet to Neumann map � [9], [13] is a mapping
from the surface displacements fi to the surface tractions Ti

and can be expressed as:

�ðfiÞ ¼ �ijnjjC ¼ Ti: ð8Þ

Inorder for� tobedefined, it is necessary that for each fi there
exists a unique Ti. The existence and uniqueness theorems of
linear elasticity are sufficient to show that the Dirichlet to
Neumann map does exist. The uniqueness theorem for the
Dirichlet plane stress problem is due to Kirchoff [7].
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Fig. 1. Cube in three-dimensional state of stress.

Fig. 2. Elastic body R and its associated contour C.



Kirchoff’s proof shows that the solution to the Dirichlet
problem is unique as long as the following conditions on the
shear modulus and Poisson’s ratio are satisfied:

� 6¼ 0 � 1 < � <
1

2
; ð9Þ

which are satisfied for the materials being considered. The
existence of solutions for the Dirichlet plane stress problem
can also be shown [12]. The existence of the Dirichlet to
Neumann map shows that the traction distribution on the
contour of a linearly elastic body can be uniquely determined
if the displacement field of its contour is known.

In general, the existence of the Dirichlet to Neumann
map cannot be proven for nonlinear problems. However,
the concept of the Dirichlet to Neumann map can be
applied to nonlinear problems where the mapping can often
be computed using numerical modeling techniques.

3 RECOVERY OF BOUNDARY DISPLACEMENT FIELD
FROM CONTOUR DATA

Thevision-based forcemeasurementproblemis thus reduced
to that of finding the displacement field of the contour of an
object. Fig. 3 shows an undeformed contour C1 along with a
deformed contourC2. In general, the problem of determining
the displacement field that leads to the deformed contour C2

does not have aunique solution. Fig. 4 illustrates this point by
showinghow twodistinct displacement fields can lead to two
identical deformed contours, C2 and C3. Three points, P1, P2,
andP3, are shownon theundeformedcontourC1 aswell ason
the deformed contours C2 and C3. Experience with elastic
objects suggests that the displacement field that created the
contour C2 is the correct one; however, both displacement
fields are equally valid.

In order to find a unique displacement field for a given
deformed contour, it is necessary tomake some assumptions

about the object that is being deformed. We assume that it

behaves according to (1) and that the strain components are

infinitesimal. With the assumption of infinitesimal strains it

becomes clear that the displacement field that led to contour

C3 is not physically possible because it would require large

strain values. Since the strains are assumed to be small, the

deformed contour will not differ much from the undeformed

contour. With these assumptions in mind, a logical way to

recover the displacement field is to perturb the undeformed

contour C1 (see Fig. 5) by small amounts until it matches the

deformed contour C2. The undeformed contour will be

perturbed by assuming a traction distribution Ti and then

deforming the contour according to (1). Fig. 5 shows a

perturbed contour C0
1, with a traction distribution Ti applied

to it, which matches the deformed contour C2.
The perturbation approach just described can be im-

plemented with a deformable template matching algorithm

where the undeformed template is the undeformed contour

of the object, C1, and the template is perturbed by a traction

distribution Ti according to the governing equations of

elasticity to obtain the deformed contour C0
1. If the elastic

model used to deform the template accurately models the

elastic object shown in the image, the solution to the

Dirichlet to Neumann Map is given by the traction

distribution, Ti, applied to deform the template. Therefore,

the Dirichlet to Neumann map can be evaluated for a

particular deformed object through the use of deformable

template matching provided that the template is deformed

according the equations of elasticity. The following section

demonstrates how this deformable template matching

technique can be applied to a cantilever beam.

4 FORCE RECOVERY WITH DEFORMABLE

TEMPLATES

As mentioned above, the Dirichlet to Neumann map can be

evaluated by a deformable templatematching technique. The

first object tested with this type of template was a silicon

cantilever beam450�mlong.An imageof the cantilever beam

is shown in Fig. 6. The beam is of a type manufactured using

standard microfabrication techniques and used in many

types of atomic force measurement approaches.

292 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 3, MARCH 2004

Fig. 3. Undeformed contour C1 and deformed contour C2.

Fig. 4. Illustration of two distinct displacement fields that lead to identical
deformed contours, C2 and C3.

Fig. 5. The contour C1 is perturbed by the traction distribution Ti so that it
matches the deformed contour C2.



The deformable template is registered to a binary edge
image [1] using a least square error measure. The template is
represented by a list of 2D vertices ri and the edge pixels in
the current image are represented by the list of 2D verticeswi.
The registration algorithm minimizes the distance squared
between the transformed template vertices ri

0
and the nearest

image edge vertices wi where the template vertices are
transformed by a elastic transformation and a rigid body
transformation.

4.1 The Rigid Body Portion of Template Matching
Algorithm

The rigid body portion of the transformation of the template
vertices is simply an affine transformation given by:

ri
0 ¼ AðriÞ; ð10Þ

where A is defined by

AðriÞ ¼ X þ cos � � sin �
sin � cos �

� �
ri; ð11Þ

where � is the rotation of the template about its origin and
X is the translation vector.

The error function is given by:

Eð�;XÞ ¼
XN
i¼1

kri0 � wik2; ð12Þ

where ri
0
is the position vector of the th edge pixel of the

template transformed by (10), wi is the position vector of the
edge pixel in the image that is closest to the point ri

0
, andN is

the number of edge pixels in the template. This error function
sums the distance squared between each of the template edge
pixels and the closest edge pixel on the image. Since the
transformed position vector ri

0
is related to the original

position vector ri by the affine transformation A, E is a
function of � andX. Byminimizing (12), the values of � andX

that best match the image in a least squares sense can be

determined.
The error function given by (12) is minimized by a first-

order multivariable minimization technique called the

Broydon-Fletcher-Goldfarb-Shanno (BFGS) method [16].

4.2 Incorporating Force into the Template Matching
Algorithm

Minimizing (12) will determine the rigid body motion of the

object. The nonrigid motion of the template will be modeled

using (1). For the cantilever beam, the Bernoulli-Euler law is

assumed to apply [12]. The Bernoulli-Euler law can be used

to simplify (1) and leads to the following displacement

solution for the cantilever beam shown in Fig. 7a:
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Fig. 6. Image of microcantilever beam.

Fig. 7. Deformable cantilever template.



u1

u2

� �
¼ 0

Fr21
6EI ð3L� r1Þ

� �
; ð13Þ

where F is the force being applied to the cantilever, L is the
length of the cantilever, E is the modulus of elasticity of the
cantilever, and I is the moment of inertia of the cantilever’s
cross section.

Next, it is necessary to apply this displacement field to the
cantilever template. It can be seen from (13) that the
x1 component of the template points will remain unchanged.
It shouldalsobenoted that, if a templatepoint’sx1 component
is less than zero, then the point will not be transformed. If a
templatepoint’sx1 component isbetweenzeroandL, then the
point will be translated in the x2 direction by u2 in (13). Points
with an x1 component greater than Lwill be translated in the
x2 direction, but the equation will be different from (13)
because the radius of curvature of the cantilever becomes
infinite for r1 > L. Once all of the template points are
translated appropriately, then (10) can be applied to the
new template points to transform them to the image
coordinate system. This is shown by the following equations:

r0 ¼ AðrÞ for ðr1 < 0Þ; ð14Þ

r0 ¼ A
r1
r2

� �
þ 0

Fr21
6EI ð3L� r1Þ

� �� �
for ð0 � r1 < LÞ; ð15Þ

r0 ¼ A
r1
r2

� �
þ 0

FL2

6EI ð3r1 � LÞ

� �� �
for ðL � r1Þ: ð16Þ

When the error function (12) is used with a template

transformed by (14) through (16), the error function becomes

a function of one additional variable, the force F applied to

the template. This is shown by the following error function:

Eð�;X; F Þ ¼
XN
i¼1

kri0 � wik2: ð17Þ

When this error function is minimized, in addition to giving

thepositionof the cantileverwithin the image, the force that is

being applied to the cantilever can be obtained. Fig. 7b shows

the undeformed cantilever template thatwas obtained froma
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Fig. 8. (a) Deflected cantilever. (b) The template matched to the deflected cantilever.

Fig. 9. Force sensing system configuration.



Canny edge image of the cantilever. Fig. 7c shows adeformed
template alongwith the undeformed template. Fig. 8a shows
an image of a deflected cantilever beam and Fig. 8b shows a
cantilever template matched to the image.

4.3 Experimental Setup

A diagram of the force sensing system used with the
cantilever beam is shown in Fig. 9. The cantilever beam is
an AFM probe tip 450 �m long with a spring constant of
approximately 0.1N/m.A knowndisplacement is applied to
the cantilever beam using a three DOF piezo-actuated
nanopositioner from Queensgate with subnanometer posi-
tioning resolution. A microscope mounted with a CCD
camera is used to obtain an image of the cantilever. A video
capture card then digitizes this image. An image captured
from the CCD camera is shown in Fig. 6.

4.4 Cantilever Results

To evaluate the performance of the VBFM algorithm, a
known displacement was applied to the cantilever beam
using a Queensgate nanopositioner. These displacement
inputs were used to calibrate the force measurement system.
Fig. 10 shows a force versus applied displacement plot. The
1 � prediction intervals are shown on the plot. The
maximum 1 � prediction value for the force measurements
is +/- 2.85 nN. The system was tested with both a 10x and a
20x objective lens. Table 1 summarizes the performance of
the force sensor with both the 10x objective lens and the
20x objective lens.

5 ALGORITHM APPLIED TO MICROGRIPPER

The methods presented in this paper can be applied to more
complex objects. In order to use this algorithm, it is necessary
to perturb the undeformed contour of the elastic object aswas
done for the case of the cantilever beam. This deformed
contour field might be obtained in a closed form solution,
such as was done for the cantilever in (13) or through
numericalmethods such as FEM.Once the deformed contour
is determined, it can be applied to the template in a manner
analogous to (14) through (16) where each template point is
displaced as a function of its position in the elastic body and
the traction distribution applied to the body.

Fig. 11a shows a microgripper developed by Yang et al.
which is used for a specific microassembly task [18]. The
gripper is cut by microwire electrodischarge machining
(EDM) from spring steel 254 �m thick. A tube slides over
the gripper to force the jaws of the gripper together in order to
grasp an object. When this gripper is used for an assembly
task, it is important to measure the gripping force that the
gripper applies to the object being held in order to ensure a
stable grasp is achieved and to avoid damage to the object
being grasped.

5.1 Modeling of the Microgripper

Each jaw of the gripper can be modeled as a cantilever
beam. Fig. 11c shows the deflection model, where D is the
displacement of the jaw due to the clamping tube making
contact with the gripper, F is the force applied to the object
being held, and u is the displacement of the jaw at a position
x along its length. D is a function of the tube position, L2,
and can be written as:

D ¼ L2 sin� � r cos�; ð18Þ

where r is the inner radius of the clamping tube. Because the
tube forces the gripper jaw to deflect, there is a reaction force
R applied to the tube by the jaw. We solve for the
displacement field, u, as a function of x, F , and L2 in order
to create the deformable gripper template. In order to solve
for u, it is first necessary to solve for the reaction force of the
gripper jaw on the clamping tube, R. The displacement D
applied to the gripper is a redundant constraint on the
cantilever beam, so the reaction force R can be solved for by
using the beam equation with the constraint that the
displacementmust beD at the locationwhere the tube comes
into contact with the gripper jaw. Once the reaction forceR is
known, it is straightforward to calculate the displacement
field, u, of the jaw using the Bernoulli-Euler law. The use of
the Bernoulli-Euler law was justified through simulations
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Fig. 10. Calibration plot for cantilever force sensor with 20x objective lens.

TABLE 1
Summary of Results for Visual Force Sensor Applied to a Cantilever Beam



with ANSYS. The deformed ANSYS model of the gripper is
shown in Fig. 11b. Since the clamping force F depends on the
position of the tubeL2, the vision algorithmmust solve forL2

in addition to F . Therefore, (17) becomes:

Eð�;X; F ; L2Þ ¼
XN
i¼1

kri0 � wik2: ð19Þ

Whenthis error function isminimized, the forceapplied to the
gripperF and the position of the clamping tubeL2 are found.

5.2 Microgripper Results

A piezoresistive force sensor manufactured by SensorOne
(model AE801) was used to verify the output of the vision-
based force sensing algorithm. Fig. 12a shows the experi-
mental setup. One jaw of the gripper was applied to the
piezoresistive force sensor and the other was applied to a
rigid microscrew. The 1 � precision of the vision algorithm
applied to the microgripper was found to be +/- 3.1 mN.
The calibration error of the vision algorithm can be seen in
Fig. 12c, where output of the vision algorithm, along with
the output of the piezoresistive force sensor, is shown
versus clamping tube position. The error in this figure is
due to errors in the material properties that were assumed
for the gripper template. This problem is not particular to
vision-based force measurement. With piezoresistive force
sensing and laser-based optical force sensing, material
properties are also assumed for the object being deformed.

6 PERFORMANCE OPTIMIZATIONS

As mentioned above, the BFGS method was chosen to
minimize the error function. The BFGS method is a

gradient-based minimization technique and differs from
the steepest descent method in that it uses information
from previous iterations in the choice of a new search
direction giving it faster convergence rates. BFGS uses
information from previous iterations to approximate the
Hessian matrix giving it convergence rates similar to
second-order minimization techniques without the over-
head of computing a second derivative.

Minimizing an error function with any gradient-based
minimization technique requires repeated evaluations of the
error function and the error function’s derivative. For this
reason, the minimization process occurs faster if the evalua-
tion of the error function is less computationally expensive.
The error function (12) is computationally expensive because,
for each template vertex, it is necessary to locate the image

vertex that is nearest to it. This problem is known as the
nearest-neighbor search or the post office problem. In the
simplest solution to the problem, one simply calculates the
distance to every image vertex. However, if the image vertex
data is organized in a spatial data structure, the nearest image
pixel can be foundwithout having tomeasure the distance to
every image pixel. The data structure employed to organize
the pixel data is the KD-Tree [11]. A KD-Tree can find the
nearest image vertex with OðlogNÞ operations as opposed to
OðNÞ operations required to find the nearest pixel without
usinga spatialdata structure,whereN is thenumberofvertex
points in the image.

The performance of the force sensing algorithm was
evaluated on an Intel based 2.2 GHz computer with 256 Mb
of RAM. The performance of the algorithm is highly
dependent on the number of pixels in the template, the
number of edgepixels in the image region beingpassed to the

296 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 3, MARCH 2004

Fig. 11. (a) Microgripper manipulator, (b) gripper ANSYS model, and (c) gripper jaw deflection model.



VBFM algorithm, and the shape of the template. For a
cantilever beam template with 184 pixels and an input image
of approximately 1,000 edge pixels, the VBFM algorithm is
able to sustain 30 Hz performance. The achievable perfor-
mance is reduced to 3 Hz if the KD-Tree data structure is not
used to optimize the nearest neighbor search.

7 CONCLUSIONS

We have presented a method to reliably measure the force
applied to an elastic object through the use of computer
vision. It was shown that, through the application of the
Dirichlet to Neumann map, the vision-based force measure-
ment problem can be reduced to that of measuring the
displacement field of the contour of a deformed object. This
observation is important because it shows that boundary
data is sufficient to completely recover the force applied to a
linearly elastic object independent of object geometry. For
nonlinear problems, the Dirichlet to Neumann map can
often be modeled numerically and the force measurement
problem can be solved using the approach presented in this
paper. In addition, performance optimizations were applied
to VBFM to achieve real-time performance (30 Hz), making
this technique useful for control applications.

Microassemblyandbiomanipulation require force sensing
for success. VBFM provides a means to measure forces
through the use of an elastic object. In the two examples given
here, the cantilever and themicrogripper, the objectswerenot
initially designed to be usedwith VBFM; however, theywere

successfully used as force sensors with no alterations. For the
cantilever, sensor resolution of +/- 2.8 nN was achieved,
while, for the microgripper, a resolution of +/- 3.1 mN was
demonstrated.These specifications approach resolutions that
are achievable with piezoresistive transducers.
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Fig. 12. (a) Microgripper experimental setup and (b) microgripper results.
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