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Abstract

Music has powerful and inscrutable effects on the human mind, and we are far from fully

understanding how that magic works. But music is not random: there are patterns in

the sounds and rhythms of a piece that can be analyzed, things that can be learned! In

this work I will review relevant research on the subject of Music Information Retrieval

and then introduce Composobot, an original program that incorporates and extends the

lessons of that research. Together we will examine how Composobot prepares musical

pieces for processing, analyzes them to extract systems of patterns and dependencies,

and then composes novel musical pieces based on what it has learned. Finally, we

will discuss how much of the magic that is in the music we love can be captured by

learning patterns the way Composobot does, and how those methods might be tweaked

to capture an even greater share of it.
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Chapter 1

Introduction

Music is great. Rather, great music is great. Great music is fantastic- it’s like stepping

into a soul larger than your own, or stepping into the larger soul you didn’t know was

your own already. Really great stuff. Awful music, on the other hand, is awful. When

it comes to awful music, we’d count ourselves lucky to only be listening to random, pur-

poseless noise. We, humans, know how to tune out random noise. The alternative, noise

arranged in patterns that actively capture our attention and offend us, is a thousand

times worse. I hate it. Yuck!

Isn’t that great in itself, though? What power music has to affect our seemingly

inviolate inner states! Even when the effect is to make us cringe and grind our teeth, we

might stop to marvel at the ability of a simple pattern of sounds to grab us so forcefully

by the collar and abuse us so roughly. What strange locks must exist, unsuspected, in

our minds, waiting only for the right pattern of sounds to turn their tumblers and open

unanticipated vistas of feeling and experience!

Before we begin to explore that particular rabbit hole, let’s address a question we

should all be asking ourselves at this point in a discussion of the potency of arranged

sound: doesn’t this not matter at all? We have a thousand straightforward examples of

patterns of sound affecting our inner states in ways that aren’t surprising at all: human

speech! If you say, “please give me that glass of water” or “you’re quite pretty”, those

patterns of sound have predictable and straightforward effects on my inner state for the

very simple reason that those patterns of sound are messages encoded in sound, and

I know exactly how to decode the sounds and understand the messages. I could even

1
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restate the same messages using totally different sounds: “surrender thine encapsulated

hydration unto my possession”, or “your face is among the best faces I have ever seen”,

not that I recommend communicating with humans in either of those ways.

Perhaps unsurprisingly, since this is a one-sided conversation I’m able to engineer

any way I like without interruption, I’ve led us into a trap! It’s not too great a leap

of analogy to imagine that music, too, encodes some kind of abstract message that

we know how to decode the same way we decode language. There would be some

leftover questions about the nature of the message and whether we’ve learned to decode

it in some way analogous to the way we learn language (I would argue that we, as

individuals, do not learn to understand music that way), but it is not an unimaginable

analogy. However, as we have seen, we know how to take the messages of speech and

re-encode them in entirely novel, if awkward, patterns of speech-sounds. With either

pattern of sounds given as examples above, a careful listener with a thesaurus on hand

should deduce that the speaker wants me to hand them a glass of water, or that they

like the way I look.

It could maybe go without saying that this has nothing to do with performing some

kind of phonemic pattern recognition on a spoken sentence and detecting a certain

ratio of consonant to vowel sounds, or a preponderance of “ee” sounds within a phrase,

and deducing meaning from that. We don’t care about any of that. We are barely

considering the raw sound level of the messages at all when we decode them, except

insofar as those sounds correspond to a dictionary of meanings in our minds. When we

think about the messages of speech in a language we understand, we think about words

and meanings, not the sounds themselves.

The flaw in our analogy, then, is laid bare: the messages of music are considered

at the raw sound level, because there is no dictionary of meanings that the sounds of

music correspond to (unless you are a spy using a piano to transmit coded messages).

To illustrate, imagine your favorite (or least favorite!) melody. Now, try to restate that

melody using entirely different notes and rhythms. In some sense, you might argue, a

talented composer could do just that, but I think that if you ask yourself whether a

third party, hearing those two melodies and without prompting, would recognize that

they convey exactly the same message, we will reach the same conclusion: a melody

doesn’t have a literal meaning the way a sentence does. A direct analogy between the
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way the sounds of speech affect our thoughts and the way the sounds of music do is

insufficient to explain how music performs its grand magic on us.

Even that statement is misleading, though. We are not simply trying to explain how

music performs its magic on us. We could say that the magic of music enchants and

ensorcels us, but music does not ensorcel a rock or a tree stump the same way. Half of

the magic is being performed by us, the listener! The potential music has to affect us

is extraordinary, but our potential to be affected by music is at least as extraordinary!

It probably isn’t possible to understand how music affects us without understanding

ourselves- in fact, understanding ourselves is probably the most important reason to

study music, outside of the sheer pleasure of it. To state it differently: a musical

analysis is really a cognitive analysis of what parts of music a mind recognizes and

responds to. A better understanding of the patterns in music that affect us, the patterns

that most people recognize and react to without any training or intention, informs a

better understanding of how our minds work.

This work before you has two purposes. The first is to explore what patterns in music

are crucial to its magic and test that exploration by generating music from those patterns

and seeing whether the magic is still there; the second is simple pleasure. Neither is

more important than the other- in fact, much like the enchanting intertwining of music

and the mind that hears it, neither would be doing magic without the other. And if

work is going to have just one purpose, it ought to be magic.

1.1 Overview

The heart of this work is The Amazing Composobot, a charming program that extracts

patterns and relationships from existing music and uses what it learns to compose

new music! Briefly, Composobot reads symbolic music in the form of MIDI (Musical

Instrument Digital Interface) files; analyzes all of the pieces they read to learn how

to build chord progressions, accompaniment rhythm patterns, and melodies; composes

entirely novel musical pieces based on the patterns they learn from the music they

analyze; and outputs the resulting compositions as MIDI files that can be listened to

and enjoyed by one and all.

The details of this process are myriad and interesting, and it is the privilege of
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this document to describe them. We will begin in Chapter 2 by discussing some of

the problems and relevant research on the subject of music information retrieval, the

learning of patterns from music; we will also offer a brief primer on Markov processes

and Hidden Markov Models in Chapter 3 that will aid in understanding the methods

Composobot uses. Once that is all out of the way, we can get to the fun part: examining

Composobot’s methodology in detail! Chapter 4 will give an overview of their scope

and major components. Chapter 5 focuses on Composobot’s implementation in code

and their preprocessing of the music they analyze. Chapter 6 will detail the learning

process, and Chapter 7 will explore the arcane mysteries of the algorithmic composition

step.

Composobot’s unabridged source code, a description of the training corpus, and

example output of pieces Composobot has composed can all be found in the appendices

of this document. Thank you for reading and, above all, enjoy!



Chapter 2

Music Information Retrieval

I hope that we are can agree that music isn’t totally random. If we play a quarter

note of middle C on the piano, it would be silly to expect, with equal probability, any

possible note at any possible duration to come next. If the next note is a quarter note of

the E above middle C, we won’t be too surprised. If the next note is C# at the highest

register audible to humans, played for a duration of 6 hours, that’s a little unexpected!

There is some kind of pattern of interactions between events in music, some web of

dependencies. There is information of some kind there.

Music information retrieval, then, is the hunt for it: the process or enterprise of

finding the information present in music and retrieving it for some kind of analysis.

In this chapter we’ll take a brief look at the parts of the history and current research

on music information retrieval that are relevant to understanding how Composobot

works and why it does things the way it does. My hope is that you, my dear reader, walk

away from this chapter with the conceptual foundation necessary to fully understand

what Composobot is doing when its inner workings are discussed in detail in later

chapters.

2.1 Representation

There are a wide variety of ways musical information can be represented, and we could

all probably come up with a handful of ideas off the top of our heads. Sheet music likely

comes to mind. A guitarist may think of tablature, a representation using the strings of

5
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a stringed instrument rather than the staff of traditional sheet. Non-musicians may be

concerned at this point that they misunderstood the question, because they immediately

thought of records or mp3’s instead of pieces of paper- you haven’t! A home video of a

children’s choir, a roll from a player piano, even the waveform etchings on the Voyager

spacecrafts count. If the thing in question can be decoded such that a musical pattern

of sounds makes it to your brain, then it’s a representation of musical information.

Rather than try to explore each possible representation one-by-one, I’m going to

focus on the broadest category of representations that is relevant to this work: discrete

symbolic representations (e.g., sheet music). In particular, we will look at digital discrete

symbolic representations that encode individual notes with pretty minimal information:

the pitch (e.g., A5 or C#3), the onset time (i.e., the point in time in a piece where a

note starts playing), and the duration (i.e., the length of time between a note’s onset

and “offset”, when it stops). Even more particularly, we’re going to look at the MIDI

(Musical Instrument Digital Interface) representation, which is what Composobot reads

and, therefore, is the only thing we care about at all.

MIDI was devised as, and technically is, a communications protocol for transmitting

music information and control signals electronically. It is a standard format, and its

use ensures that electronic devices can communicate music information to one another

effectively and without data loss. As such, it consists of more than just the note-level

information described in the previous paragraph- MIDI format also encodes metadata

about a piece’s speed and time signature and format; divisions of notes into any number

of tracks and up to sixteen audio channels; and even event data to control changes in

tempo, volume, instrument, vibrato, etcetera[1]. While this is certainly interesting and

useful in a lot of contexts, we don’t care about most of that stuff and are going to

abstract it away. Exceptions will be that every piece in our corpus will be encoded in

MIDI such that melody and accompaniment voices are stored in separate tracks so that

they are easy to separate, and will have a uniform tempo defined by a “time division”

of 96 milliseconds. That is to say that a quarter note, for any of our corpus pieces, will

have a duration of exactly 96 milliseconds.

More important for our purposes is the note level information MIDI offers, because

it includes exactly what we want: pitch, position, and duration. Each is represented by

an integer value. Pitch is defined such that C5 (middle C) = 60, and a note n half-steps
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up or down from C5 is equal to 60 + n or 60 − n, respectively. For example, B3 is

thirteen half-steps below middle C, and so has the value of 60− 13 = 47. Position and

duration are defined in terms of milliseconds: number of milliseconds into a piece a note

occurs, and number of milliseconds a note lasts, respectively.

Let us imagine a note that has the pitch C5 (middle C), occurs at the beginning

of the second measure of the piece, and is one half-note in length. Given that we’ve

specified the duration of a quarter note as 96 milliseconds and assuming our piece is

in 4/4 time, the note would be represented as: {60, 384, 192}. C5 = 60 as described

in the previous paragraph; 384 = (96)(4), which represents that the note occurs four

quarter notes into the piece, which is where the second measure begins; 192 = (96)(2),

the duration of two quarter notes, which is equal to the duration of a half-note.

For the purpose of this work, imagine MIDI files as consisting of two sequential lists

of notes defined as above: one list for the melody notes, and another for all of the other

notes. Sometimes those lists will be considered in combination, as one giant bag of

notes. At other times, they will be considered separately. The important thing to keep

in mind is that they are ordered lists of note pitches, positions, and durations.

2.2 Key-Finding

If you’re going to learn general musical patterns from a piece of music, it’s really helpful

to know what key it’s in. Contrary to the unlimited analogy principle of colloquial goose

wisdom, what’s good for C major is not good for F# minor. If we generate music using

the lessons of every key all mixed together indiscriminately, then a little consideration

reveals that we might generate any note at any time, and random noise is the most

merciful thing we might inflict on our poor listeners who, let us assume, have done

nothing wrong.

So when our program analyzes a piece to learn its patterns, we want it to know the

key of the piece it is analyzing. It should be able to say “these are C major patterns,

I’m going to keep these separate from the F# minor patterns”. It would be possible to

hand-annotate each input piece beforehand with its key and mode (“C” and “major”

or “F#” and “minor”), but a few things have to be true in order to be able to do so

accurately. First, any given piece in our corpus, or set of training pieces, must have
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an agreed-upon key, declared explicitly by a composer or music theorist and accepted

broadly to whatever extent our definition of accuracy demands. That’s usually true,

but there are counterexamples- what if we want to analyze something that itself was

algorithmically composed? Second, and most crucially, we have to know what corpus

we’re going to use and have the time and resources to perform the hand-annotation!

Every time we want to analyze some new piece, we’ll need to stop and determine its key

and make sure to tell our program what to expect. Wouldn’t it be nice if there were

some relatively straightforward and reliable way to annotate a piece algorithmically?

Fortunately, there are reliable ways to determine a piece’s key algorithmically, de-

pending on the strictness of your definition of reliable! Work on this goes back a long

way; in some respects, it is as old as music theory itself. The early computational

models, such as the work of Longuet-Higgins & Steedman [2] in 1971, relied on the

most fundamental music theoretical insights into the nature of keys: which set of notes

define the key. A piece could be scanned note-by-note from beginning to end such that,

initially, all keys are possibilities. With each scanned note, any key not containing that

note would be discarded as a possibility. At the end of the piece, if there is a single key

possibility remaining, the model selects that key. If there is more than one remaining, it

selects the key whose tonic is the first note of the piece. If none remain, as often happens

with more complex pieces containing accidentals, it again selects the key whose tonic is

the first note of the piece in spite of that key having been eliminated along the way.

As in most areas of modeling, work has since shifted away from a strict rule-based

approach toward probabilistic or mixed rule-probabilistic modeling. The Krumhansl-

Schmuckler key-finding algorithm[3] introduced in 1990 relies heavily on the concept of

“key profiles”, introduced by Krumhansl & Kessler in 1982[4]. A key profile represents,

in some way or another, the expected distribution of notes in a piece of a given key.

Early key profiles built by Krumhansl & Kessler were developed by playing a short key-

establishing piece for an audience of human subjects and then playing a single additional

note. Listeners were asked to rate, on a scale of 1 to 7, how well they thought that

additional note “fit” with the piece they had just heard. For each key, each of the

twelve notes was then weighted according to the scores it had received from the human

subjects, and the resulting distribution became the key profile for that key. The profiles

generated by Krumhansl & Kessler were found to very closely match insights of music
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theory: the largest probability space is given to the tonic, followed by tonic triad notes

and then the other notes that define that key, with chromatic notes receiving the least

probability space.

An interesting and useful observation arose from the development of these key pro-

files, which also matched the insights of music theory: within a mode (that is, major

or minor), the distributions of different keys looked very similar. The key profile for

D Major, for instance, looks a lot like the key profile for C Major, only shifted up two

notes. Incorporating this assumption of intra-mode transpositional similarity not only

simplifies the process of building key profiles by allowing the key profiles for each key

in a mode to be generated by building a single key profile in that mode, it allows for

more robust models requiring fewer data, since pieces in any major or minor key can be

analyzed and their results transposed to the same key. In other words, an analysis of

five pieces in C Major, five pieces in D Major, and five pieces in F# Major is really an

analysis of fifteen pieces in “Major”. A greater volume of representative observations

helps build a more robust model.

Subsequent work by, for example, Temperley[5] and Hu & Saul[6] embraces increas-

ing computational power and availability of data to build key profiles based entirely

on the observation of pieces, without the input of human subjects. Building such pro-

files requires some corpus of key-annotated pieces, but the process is relatively simple:

observe the frequency of notes occurring in a piece of a given key, and calculate the

probability distribution directly from those frequencies. The key profiles generated by

Hu & Saul[6] are similar to the profiles generated by Krumhansl & Kessler[4], but model

starker differences in probability between in-key and chromatic notes.

Figure 2.1: Krumhansl-Kessler key profiles.



10

Figure 2.2: Hu-Saul key profiles.

Using a set of key profiles to classify a piece into a key, then, is at its heart a process

of comparing the observed note distribution of a piece against the note distributions of

the key profiles and selecting whichever key’s profile is most similar to the distribution

of the piece. The method of key-finding used by Composobot relies heavily on this

process and on the Hu-Saul key profiles, and is described in detail in Section 6.2.

2.3 Chord-Labeling

In monophonic music, we might get away with modeling a musical piece by simply

considering what notes are likely to be played in succession- that is, the probability

of some note n being played given some note m being played directly beforehand, or

given some set of notes {m1, · · · ,mn} being played in succession beforehand. If music

were always a series of non-overlapping notes played in succession, then this might be

a reasonable level of information to target for retrieval.

Of course, music isn’t always monophonic. A saxophone solo is; a piano concerto

likely is not. For polyphonic music we must consider not only the succession of notes, but

also the concurrence of notes. Why are some notes played together, or in close metric

proximity to one another, while others are not? What determines the set of notes that

are likely to be played during a given chunk of metric time, and what determines which

set of notes are likely to be played during the next such chunk?

It is for these reasons that we consider chords and the progression of chords. Chords,

as I’ve implied, are not strict sets of entirely overlapping notes played at once, but rather

represent some distribution of likelihood of notes being played during a span of time.
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Paiement, Eck, & Bengio[7] articulate this idea eloquently:

In general, the chord progression itself is not played directly in a given music

composition. Instead, notes comprising the current chord act as central

polarities for the choice of notes at a given moment in a musical piece.

Given that a particular temporal region in a musical piece is associated with

a certain chord, notes comprising that chord or sharing some harmonics with

notes of that chord are more likely to be present.

The aim of chord-labeling, then, is to divide a piece into “temporal regions” and

then find some way to characterize the “central polarities” of those regions. A labeled

chord progression should describe a progression in divisions of metric time through a

piece, describing in some fashion how likely given notes are to appear in those divisions.

2.3.1 Chord Characterization

The tough and central question is of how we want to characterize a chord. The number

of ways to do so is infinite; even among those finitely many characterizations that are of

at least some δ usefulness, the possibilities are remarkably varied. Rather than explore

all of them, let’s discuss two approaches that more-or-less describe the range of the

space of useful characterizations.

The first and, probably, most familiar of these characterizations is a symbolic aggre-

gate description: a short series of symbols that describe a set of possible notes in terms

of a scale. Chords described in this way usually consist of the letter of the chord’s tonic

(e.g., “A” or “F#”), a symbol describing the modality of the chord (“m” for minor,

“M” for major, “aug” for augmented), and any interval modifications or additions to

the basic 3-note triad described by the preceding symbols (“7” for including the seventh

of the scale, “/A” for including an A below the tonic as a bass note). Examples include

“Am” for A minor, “CM7” for C major seventh, or “F#aug” for an augmented F#

triad.

This characterization has a few advantages and a few disadvantages. It has the

advantages of being compact, requiring just a few symbols to communicate a lot of

information about what notes are likely in a given time division, and of having a rela-

tively small range of possible values- small enough that it is not unreasonable that you
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could enumerate all likely chords in a list. However, its compactness is the result of it

relying heavily on the music theoretic acumen of its interpreter. It certainly wouldn’t

be straightforward for a non-musician to translate “DmM9” into accurate knowledge

about the distribution of notes in a time division so labeled. In particular, there is a

probability distribution of possible notes implied symbolically that a musician may un-

derstand implicitly, but there is no precise definition of that distribution accompanying

the symbols.

This representation’s small range of values, similarly, implies a disadvantage: it does

not capture information about particular voicings of a chord. Octave is abstracted,

meaning that the note sets {A0, E1, C1} and {A5, C6, E7} will both map to “Am”.

Many different note sets are aggregated to a small set of symbols, which is great for

storage of information and reduction of dimensionality, but makes it impossible to re-

construct the details of a chord voicing accurately.

On the other side of this range is the representation adopted by Paiement, Eck, &

Bengio[7], authors of the previously quoted definition of a chord, in 2005. Their chord-

labeling model characterized chords entirely literally: a chord would be defined by the

exact pitch and octave values of the notes within a time division. The note sets from the

previous paragraph’s example, {A0, E1, C1} and {A5, C6, E7}, would be represented by

the strings “a0e1c1” and “a5c6e7”, rather than both mapping to “Am”.

This representation is not without its own disadvantages. The first is that there is no

way to reasonably enumerate the possible chords beforehand. Even limiting ourselves

to the 88 likely note values in piano music, enumerating all possible combinations of

any number of values is combinatorially apocalyptic. This is the inverse of one of the

challenges faced by the symbolic aggregate representation: it is always possible to per-

fectly reconstruct a chord voicing, but the storage requirements for a chord progression

are little less than that of a whole piece.

A more informatically relevant disadvantage is that learning becomes sparse. Prob-

ably there are quite a few qualities in common between “a0e1c1” and “a5c6e7”, both

being voicings of Am, but they are learned as entirely separate entities- any underlying

similarities are missed. Given corpora of the same size, we might learn quite a bit less

about the general class of A minor chords using a literal representation, and may risk

overfitting the particular measures and pieces we observed these chords in, if there are
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relatively few examples.

There is no perfect answer. The characterization appropriate to an analysis depends

on the motivations for that analysis. A study of common chord progressions will likely

prefer a symbolic aggregate representation; a study of chord voicings will prefer a literal

representation. The focus of this work is somewhere in between, and will correspond-

ingly prefer a representation that falls somewhere between the two extremes.

2.3.2 Assignment of Labels

The point of discussing chord representations was that we wish to label time divisions

with chords in some way. So, once some chord representation has been selected, a piece

will have to be sliced up into time divisions and analyzed so that it can be labeled with

a chord using the chosen representation’s lexicon.

A naive, but generally effective, approach is to simply divide a piece into even slices

(e.g., half-measure lengths) and label each based on the notes appearing in that slice.

The division of the piece shouldn’t be entirely arbitrary- if the slices are too thin, they

will have too little evidence to meaningfully determine a chord. What chord does a

single note of A5 represent? A Major? A Minor?

On the other hand, if the slices are too thick, then it’s more likely we’ll be trying to

assign one chord to a section of music containing multiple chords in progression. Not

only would this make it difficult to accurately assign any correct chord, since two chords

combined may mimic some third chord, but we would certainly be losing information

about the chord progression as a whole. One solution, again naive but generally effective,

is to examine the pieces in a corpus and determine a reasonable division for that corpus.

The method for then assigning labels to those divisions depends strongly on the cho-

sen representation. In most cases the methods are alike in that they involve calculating

some measure of distance between the observed set of notes and each of the chords in

the set of representations, then accepting the nearest such chord.

The simplest representation for determining a label is probably the literal represen-

tation of Paiement, Eck, & Bengio[7], described above. If a chord is defined as the set of

all notes played in a time division, then labeling is trivial: simply label each time divi-

sion with the notes that fall within it. This is essentially a calculation of distance in the

discrete metric: identity implies minimum distance, and non-identity implies maximum
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distance.

In the symbolic aggregate representation (e.g., Am7) it is possible to enumerate the

space of possible chords in a list prior to analysis. For each enumerated chord, a set

of pitch classes could be selected that define that chord, where “pitch class” is a note’s

pitch value with octave abstracted away- for example, the pitch values A4 and A6 both

have pitch class A. There are twelve pitch classes in western tonal music, and so a chord

might also be represented by some list of elements from those twelve classes: Am7 is an

Am triad (A, C, and E) with an added minor 7th (G), and so might be represented by

{A,C,E,G}. Another way to represent the same list is with a binary 12-vector, where

position 1 corresponds to the pitch class C and position 12 corresponds to the pitch

class B. Then {A,C,E,G} ≡ {1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0}.
Then, for a time division, a similar 12-vector could be constructed simply by looking

at all pitch classes present in the time division: a time division containing the notes a5,

c6, g6, and c7 has pitch classes A, C, and G, and a vector representation of {A,C,G} ≡
{1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0}.

Distance could be calculated between a time division and each chord in any number

of ways. The most straightforward would probably be the Hamming distance between

the binary strings of the 12-vectors, or the number of positions at which those strings

differ. In the case of the 12-vectors offered above as examples, that distance is 1.

Notice, however, that in our example time division the pitch class C appears twice,

but is not given any additional weight in the 12-vector. That frequency information

is abstracted away, and it’s entirely possible that that information is relevant. Note

also that the lowest note has a pitch class of A, and that that information is similarly

lost. These abstractions may serve as motivation for applying some kind of weighting to

the elements of the 12-vectors, rather than representing mere presence or absence with

binary values. Indeed, we will explore a more nuanced weighting scheme in Section 6.1.

With a 12-vector of non-binary values, Hamming distance will no longer work. A

straightforward generalization to 12-dimensional Euclidean distance can be, and often is,

employed instead. This measure will prove essential to the way Composobot calculates

distances between chords and determines chord labels and will also be discussed in detail

in Section 6.1.

The final application of this measure of distance is, again, to find that chord in an
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enumerated list of possible chords that is nearest to the notes that appear in a chosen

time division. Once that chord is determined, the time division in question can be

labeled with the chord’s representation (e.g., Am7).

Regardless of representation, once each time division in a piece is labeled, a chord

progression for that piece can be defined as an ordered list of chord labels: examples of

short chord progressions include {a0e1c1, c3e3g3, a5c6e7g7, b5e6b7} in the literal repre-

sentation or {Am,CM,Am7, B4} in the symbolic aggregate representation.

2.4 Melodic Phrase Boundary Detection

When examining the musical piece as whole, we considered the distribution of notes

within a time division to make a progression of chords, rather than considering individual

notes in sequence. Similarly, an examination of melody in terms of individual notes in

sequence is too naive to extract most of the useful patterns that make a melody what it

is. A melody is not just a string of musical notes in order; there is underlying structure

that ties those notes together, and to the rest of the piece.

The appropriate level of abstraction at which to try to capture that structure is very

much an open problem. That said, Temperley offers evidence to suggest that there is a

level analogous to an existing music theoretical structure that captures a great deal of

the information we want: the melodic phrase[8].

The definition of a melodic phrase, much like the definition of a chord, is not a rig-

orous one. A melodic phrase might be described as a sequence of notes in a melody that

“belong together” in the sense that words in a sentence “belong together”. That is to

say that a listener might perceive some notes as beginning a sort of musical statement,

and some notes a short while later as concluding it. This is an admittedly vague no-

tion, but human listeners have a surprisingly easy time dividing melodies into phrases.

It stands to reason that there are patterns we could exploit to make those divisions

algorithmically.

Much of the work that has been done on the problem of detecting melodic phrase

boundaries relies on a few intuitions about the way that human listeners draw these

divisions. One such observation is that longer gaps between notes tend to denote di-

visions between phrases, which is to say that listeners tend to perceive melody notes



16

as being “together” when the gap between them is shorter, and “not together” when

the gap between them is longer. Another is that the length of phrases is generally in

the same range, which is to say that listeners are more likely to perceive a boundary

between phrases after roughly a certain number of notes, which varies by genre. A third

is that melodic phrases tend to start at roughly the same point in the metrical structure

as one another, which is to say that listeners expect phrases to begin near strong and

even beats of measures, and especially to begin near the same beats as the other phrases

they’ve perceived so far.

Temperley synthesizes these intuitions into what he calls Phrase Structure Preference

Rules, which are rules for assigning greater or smaller probability to a note that it marks

the end of a melodic phrase, based on measures of the aforementioned intuitions. He

calls those measures the Gap Rule, the Phrase Length Rule, and the Metrical Parallelism

Rule. Exact implementations of these rules are not offered, but general formulae are

suggested[9]. The general formulae and ideas behind Temperley’s Phrase Structure

Preference Rules are adapted and implemented within Composobot; the details of their

use are described in detail in Section 6.5. For the time being, it’s important to note that

these rules are preference rules and not strict rules, which is to say that they increase or

decrease the probability of a melodic phrase boundary appearing between notes, rather

than dictating explicitly where boundaries fall.



Chapter 3

Markov Modeling

Here’s the hard news: it’s going to be tough to understand how Composobot transforms

the information it retrieves from music into a model that can be used to generate

new music unless you have a foundational understanding of Markov chains and Hidden

Markov Models. But before you get too excited about having the perfect excuse to pack

it in and head home, I’ve got a second bitter pill for you: I’m going to do my best to

provide that foundational understanding right here in this very chapter. Unless you’re

willing to risk being slightly impolite, you’ve no recourse but to read on.

I’ll begin with a brief explanation of the Markov assumption and how it is used

to build the type of stochastic model called a Markov chain. Once we’ve got a firm

grasp on those essentials, I’ll discuss a particular type of Markov model used when the

phenomenon being modeled cannot be observed but some of its effects can, and how

that type of model is essential to Composobot’s doing that thing it do.

3.1 Markov Chains

Markov chains are Markovian processes relying on the Markov assumption. As you may

notice, that’s not super helpful, because “Markov” is not a real word with a definition.

All of this stuff is named for Andrey Markov, a mathematician whose privilege it was

to discover and begin the codification of these ideas[10]. His name is fantastic and I

love it, but this naming scheme does put us in the position of having to explicitly define

some terminology that isn’t very self-descriptive, which we’ll jump straight into now.
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Imagine some chain of events that happen in order, such as words in a sentence or

the daily weather over the course of a week. “The slithy toves did gyre and gimble in

the wabe”, or Sunny followed by Overcast followed by Rainy. These chains of events

could be thought of as series of “states”. In the case of a sentence, each unique word

can be thought of as the “state” that the sentence is currently in at some point in time.

In the case of weather, Sunny, Overcast, and Rainy are “states” that the weather is

in during some given day.

Now imagine that you want to know how likely it is that “wabe” appears as the

final word in a sentence, or how likely it is that it will rain tomorrow. The Markov

assumption is that this likelihood really only depends on some small number of states

that come directly beforehand, rather than the entire text that precedes the sentence or

the entire history of weather in a region. The most commonly made Markov assumption

is called a first-order Markov assumption, which is that the likelihood depends on just

the one preceding state[10].

If we’re making the Markov assumption, then the chain of events in question is called

a Markov chain. We can represent a Markov chain graphically, or by a matrix of the

probabilities of transitioning from one state to another. The representations are called

Markov transition graphs and Markov transition matrices, respectively. Taking weather

as an example, a Markov transition graph and Markov transition matrix that describe

such a Markov chain are given in figure 3.1 below.

Figure 3.1: Weather Example

According to this model, the probability of the weather being Rainy tomorrow given

that it is Overcast today is 0.2, while the probability of it being Overcast tomorrow
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given that it is Overcast today is 0.55. You might imagine beginning in the node of the

graph that represents today’s weather and traveling along the arrows originating from

that node once per day, arriving in the node that represents the next day’s weather,

repeating this process again and again until some unimaginable calamity brings about

the end of all weather or until you get bored with the model.

This is, in essence, a Markov chain: a stochastic model that represents probabilistic

transitioning from state to state dependent on the state or states that directly precede

the transition. As simple as these models seem, they end up being very widely and

usefully applicable; certainly they have been shown to be applicable in the domain of

music, or we wouldn’t be talking about them here[11][10][7][12][8][9]!

3.2 Hidden Markov Models

In the case of modeling weather, we enjoy the convenient advantage of knowing what

the weather is like. We can look out the window and we just know. There’s no need

to stand outside with our eyes closed and infer the weather by whether we get wet or

sunburned or just bored. We can observe the phenomenon we’re interested in directly.

This isn’t always the case! Suppose we did have to test whether we were wet or

sunburned in order to know the weather, and deduced it was Cloudy only when neither

of those two phenomena occurred. That’s possibly difficult to imagine, because we can

probably think of a few ways to troubleshoot that problem: open our eyes, or ask a

friend, or fire a laser through the open air at a sensor to see what happens to the beam.

Let’s imagine another wacky situation instead. Imagine that someone is sitting inside

a shed and reading a book. She has three buttons in front of her, each corresponding to

a different color: Red, Blue, and Green. You’re sitting comfortably in a different shed,

and you have three colored bulbs, of those same three colors, in front of you. Whenever

the Reader reads a noun, she will press the Red button, and the Red bulb will light

up in your shed. Whenever she reads a verb, she will press the Blue button, which

will light up the corresponding bulb on your end. Whenever she reads a word that is

neither, she will press Green and your Green bulb will be lit.

This is an example of a simple Hidden Markov Model: you can observe directly the

transitions between colors, but you can’t observe the transitions between words in the
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Reader’s text. The model is called “hidden” because the phenomena we want to model,

in this case the words the Reader is reading, are hidden and cannot be observed directly.

We can’t directly observe the transitions between states, but only their “emissions”, or

their consequences[13].

Often, these emissions are even more convoluted than in our example. Suppose

that the Reader was a little careless, and pressed the wrong button 5% of the time.

Now our observations have to be weighted by our confidence that the color we see

actually corresponds to the type of word the Reader is reading. Maybe the Reader gets

very excited about verbs, and is even more careless when reading a verb, pressing the

wrong button 10% of the time. This makes Blue even less likely to be the correct color

whenever we see it, but also makes Red and Green slightly less likely! Then suppose

that the wiring between the sheds is a little slapdash, and has a tendency to malfunction

when it’s raining. Now we have to look outside whenever we see a color, and consider

the probability that the wrong bulb is lighting up depending on its color, and whether

it’s raining... things get complicated quickly. C’est la science.

The Markov models we deal with in this work won’t be quite that messy, but they do

model hidden information. We can observe straightforwardly the proportionality of the

chord CM7 followingAm, but sometimes progressions of chords depend on their position

in some kind of abstract rhythmic structure, or on their proximity to the conclusion of

a piece, and nobody fully understands that rhythmic dependency. We calculate based

on the emissions, such as the probability of CM7 given that Am precedes it, and that

CM7 will be the third chord in a repeating 1− 2− 3− 4 count, and that it is not too

close to the end of the piece. We seek to capture as much information as we can about

that abstract rhythm structure without being able to observe it directly. Consequently,

most of the Markov chains in this work are in fact Hidden Markov Models.

If this section was abstract, dull, or difficult to follow, worry not. The important

lessons to take away from this chapter are that Markov chains model transitions between

states using conditional probabilities, and that sometimes it isn’t possible to directly

observe what we’re modeling, and so we have to consider some extra variables to try

to get at that information indirectly. If that makes sense, then congratulations! You’ve

successfully learned things from this chapter and are well-equipped to move on to the

good stuff!



Chapter 4

Anatomy of Composobot

The goal of this work is not just to understand Music Information Retrieval and how it

might relate to Algorithmic Composition, but to actually build a program that walks

the walk: preprocessing input for analysis, performing the information retrieval, and

then composing original music based on what it learns.

As you may recall or guess, that program has been built, and their name is Com-

posobot! The details of how Composobot works make up Chapters 5, 6, and 7. First,

though, I’d like to give a brief overview of Composobot so that we have a rough idea

of their scope and structure, a frame through which to view the finer details as we dive

more deeply in.

Composobot’s overarching goal is to take a corpus of musical pieces in MIDI format

as input, learn patterns from them, and then compose original music based on what they

have learned, outputting its compositions as ready-to-play MIDI files. Their process

consists of three broad steps: preprocessing, learning, and composition.

The preprocessing step (Chapter 5) consists of reading in a list MIDI files, deter-

mining the key and mode of each piece individually, transposing the pieces to C Major

or C Minor depending on whether the piece itself is Major or Minor, and then writing

them out as new MIDI files that are labelled as Major or Minor.

The learning step (Chapter 6) is somewhat more involved. The preprocessed MIDI

files are read in and separated into Major and Minor mode sets, as Major and Minor

patterns will be learned and kept separately. Then each piece is separated into time

divisions of one half measure, and the set of notes in each division is used to identify
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that division’s chord. This generates a sequential list of chords that form the chord

progression for that piece, and the progressions for all pieces within a mode set are

considered to build a Markov transition matrix for chord states, said states including

a little extra information about the local and global positions of that chord within the

piece.

Then, rhythm patterns are learned using the same half measure divisions by ob-

serving the rhythm of accompaniment notes in that half measure. A Markov transition

matrix for accompaniment rhythm patterns is generated, conditional on preceding ac-

companiment rhythm pattern.

Finally, the melody voice is divided into “melodic phrases” using boundary detection

on the melody voice. Markov transition matrices are generated for melodic phrase

rhythm patterns conditional on preceding melodic phrase rhythm patterns. Markov

transition matrices are also generated for the melodies within those phrases, conditional

on previous melodic notes and on underlying chord.

Note that in all cases, rhythm patterns for Major and Minor mode sets are combined

under the assumption that rhythm is not significantly conditional on mode.

Composobot’s composition step (Chapter 7) consists of reading in the transition

matrices and parameters from the learning step and then initiating a series of Markov

processes to generate different elements of a new piece. Parameters are set at runtime

for the key, mode, and length of the piece to be generated. Then, a chord progression is

generated using the chord transition matrix for the appropriate mode (Major or Minor),

and chord substitutions are made probabilistically based on a calculated “distance”

between chords. A progression of accompaniment rhythm patterns is generated, and

the chord progression given expression using those rhythm patterns. A progression of

melody phrases is similarly generated from its transition matrix, and rhythms within

those phrases are given note values using the melody transition matrix, note values

being conditional on previous note within the phrase and on underlying chord. Finally,

the piece is written out to a MIDI file that can be easily played on most systems.

Without doubt, that overview raises a lot of questions. Stick with me! It will be my

earnestest enterprise to answer them in the coming chapters.



Chapter 5

Composobot: Implementation

and Preprocessing

A program that learns how to write its own music sounds like a really great idea!

Unfortunately, and to my utter dismay, in order to have written such a program, it is

necessary at some point to actually write it. C’est la vie.

In this chapter we’ll first examine how Composobot was, in fact, implemented, and

what kind of input data they expect and receive. Then we’ll look at the first graceful

step in the syncopated waltz that is Composobot’s process: preprocessing their input

files to transpose them all to the key of C and separate them into sets of Major and

Minor pieces.

5.1 Implementation

Composobot is implemented entirely in the Julia programming language, a dynamic

programming language optimized for numerical computing[14]. The unabridged Julia

source code for Composobot can be found in Appendix A, though I would inflict on

nobody the task of attempting to fully understand the program solely by that code.

In addition to being both speedy and easy to use in itself, Julia offers the advan-

tage of easy processing of MIDI data thanks to Joel Hobson’s MIDI.jl package[15]. As

discussed in section 2.1, MIDI note events are, by default, encoded with their literal

timing in milliseconds. While ideal for accurately reconstructing a piece from data, this
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representation entails an additional layer of challenges if we are interested primarily in

the metrical timing of notes- that is whether they are, for example, quarter notes or

half notes, and where they can be placed in a measure.

Hobson’s MIDI.jl package structures MIDI data in a way very convenient for those

purposes. The timing of a piece is divided into “ticks”, with some number of ticks

comprising a “beat”. “Beat” here has the traditional meaning: in a piece in 4/4 time,

for example, each measure consists of 4 beats, with each beat having the length of one

quarter note. The number of ticks in a beat, then, describes the resolution of the timing

in a piece. If a beat consists of 96 ticks, then a quarter note has a duration of 96 ticks;

a sixteenth note has a duration of 24 ticks; a half note has a duration of 192 ticks.

A “note” object in MIDI.jl includes information about its duration and its position

within the piece, both measured in ticks. Additionally, an object representing the MIDI

file of a piece stores a value representing the number of ticks per beat for that piece. So,

supposing we know the time signature of a piece, we can extract the metrical timings

we want in the following way:

Let aP
bP

denote the time signature of a piece P , let tP denote the ticks-per-beat of

that piece, and let xn and dn denote the position and duration, respectively, of a note

n in P .

δ(n), the metrical duration of n in terms of fraction of a measure, is given by

δ(n) =
dn
tP bP

(5.1)

β(n), the position of n within its measure, is given by

β(n) =
xn
tPaP

mod 1 (5.2)

And α(n), the measure in P that n falls within, is given by

α(n) =

⌊
xn
tPaP

⌋
+ 1 (5.3)

This allows for straightforward conversion from the data in the representation offered

by MIDI.jl to the metrical timings we want to work with. Excellent!

The last crucial element of a note in MIDI.jl that we need to discuss is its represen-

tation of a note’s pitch class and octave. This, too, is straightforward: a note’s overall
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pitch is represented by an integer value, with middle C (C5) being represented by the

value 60. This means that we can easily extract a note’s pitch class and octave with a

little modulo arithmetic.

Let n again denote a note, and let v denote its integer value representation of its

pitch class and octave. Let F : V → N where V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} and

N = {C,C#, D,D#, E, F,G,G#, A,A#, B} be an ordered mapping from an integer

value in V to a pitch class in N such that F (vi ∈ V ) = ni ∈ N .

p(n), the pitch class of n is given by

p(n) = F (v mod 12) (5.4)

o(n), the octave of n is given by

o(n) =
⌊ v

12

⌋
(5.5)

MIDI.jl also provides architecture and a suite of useful functions for reading and

writing MIDI files that, while of enormous utility to Composobot’s functioning, are not

conceptually relevant here. These and many other characteristics of MIDI.jl are best

described by its documentation[15].

5.2 Corpus Construction

Before Composobot jumps right in and starts analyzing pieces, it needs a corpus of

pieces to analyze!

Composobot doesn’t have any idea how to gather a corpus of MIDI files, and so I’m

not embarrassed to admit that the author shouldered most of the burden on this step.

Sheet music for a selection of pieces of classical piano and related music was gathered

with the goal of providing a relatively representative sample of the style of classical

piano. The full list of pieces in the corpus can be found in Appendix C.

These pieces were then converted to MIDI files by hand using Tabit, a software de-

signed for composition and playback of MIDI music using a tablature representation[16].

Small simplifications were made to these pieces: volume dynamics, modulation/vibrato,

portamento, and other elements of performance expression were abstracted away. Ad-

ditionally, the melody voice and accompaniment were encoded on separate tracks so
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that they can be considered separately by later processes without needing to detect and

separate them algorithmically. This seemed a reasonable simplification to maintain,

since the voices are generally separated that way in the source sheet music.

Once the transcription is done, the files are gathered into a single folder and the list

of their names is given to Composobot so that they know what to preprocess.

5.3 Key-Finding

Once the corpus is assembled, Composobot leaps into action! What they want to do

is transpose each piece to C Major or C Minor, so that they can learn patterns for

abstract “Major” and “Minor” patterns, rather than generating twelve different Major

and twelve different Minor pattern sets. In order to accomplish that, they need to know

what key each piece is in to begin with!

In pursuit of this lofty aim, Composobot reads each piece and compiles a proba-

bility distribution of the notes in that piece by direct observation. They compare this

observed distribution to a set of key profiles derived from the Hu, Saul[6] profiles dis-

cussed in Section 2.2 using 12-dimensional Euclidean distance to determine a set of “key

distances”.

Figure 5.1: Exact Key Profiles

Let the observed probabilities in a piece P be denoted by OP = {o1, o2, · · · , o12},
and let the twenty-four key profiles derived from the Hu, Saul profiles be denoted by

Kj = {kj1 , kj2 , · · · , kj12} for 1 ≤ j ≤ 24. Then the “key distance” dk(OP ,Kj) between

the observed distribution and a given key profile is given by

dk(OP ,Kj) =
√

(o1 − kj1)2 + (o2 − kj2)2 + · · ·+ (o12 − kj12)2 (5.6)

Generally, the key profile with the smallest distance from the observed distribution

should be considered the key of the piece. However, this is complicated by the fact that

each Major key has a relative Minor, and vice versa. A key and its relative key have the
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same notes in their scales, though they have different tonics, or root notes. For example,

the C Major scale consists of all the white keys on a piano; so does the A Minor scale.

This can make it difficult to differentiate between relative keys by distribution alone.

To help alleviate this problem, Composobot weights the distance calculation such

that dk(OP ,Kj) is artificially lower if Kj represents the key of the piece’s first measure.

For Kt denoting the key profile matching this favored target, the weighted distance

d′k(OP ,Kt) is given by

d′k(OP ,Kt) = dk(OP ,Kt)− 0.1 (5.7)

To find this favored target key profile, Composobot first determines the key of the

piece’s first measure using Equation 5.6, with the modification that OP in that calcula-

tion represents only the observed distribution of the first measure. The least distant key

profile becomes the favored target key profile, such that when Equation 5.6 is applied to

calculate distances for the whole piece, Equation 5.7 is substituted when calculating the

distance from the favored target profile. The least distant key profile in this calculation

is considered the key of the piece.

5.4 Transposition and Labeling

Once Composobot is fairly certain it knows a piece’s key, they want to transpose that

piece up or down to the nearest octave of C. This is done by arithmetic transformation

on the pitch value of each note in that piece: if the piece is found to be in the key of A,

for example, then the pitch value of each note in the piece is incremented by exactly 3,

the distance between C and A. Alternatively, if the key of the piece is found to be F ,

each pitch value is decremented by exactly 5, since it requires fewer incremental steps

to transpose down to F from C than it does to transpose up. If the key of a piece is

found to be C then no transposition happens at all.

Once this transposition is done, Composobot writes the piece back out to a new

MIDI file which is labeled in its filename as being either Major or Minor. This labeling

is done uniformly so that when Composobot reads a file during its learning step, they

can recognize from the filename whether the piece should be considered Major or Minor.

At the triumphant conclusion of this step, Composobot has ensured that the corpus is
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divided into Major and Minor partitions to be analyzed separately, and that all pieces

in each partition are in the same key so that each partition can be analyzed all together.

At this point, Composobot is ready to analyze our corpus and learn how music

works!



Chapter 6

Composobot: Learning

At this point, we have a solid corpus of Major and Minor pieces, all transposed to the

corresponding key of C and labeled with their mode. Time for the good stuff: reading

the music and learning all about it!

Composobot is going to look at the pieces in two different ways: in terms of a

piece’s chords and chord progression, and in terms of the melody voice. It will start

by determining and labeling chords, build those into progressions, and then estimate

Bayesian probabilities of substituting chords with other chords based on a measure

of distance between the chords. The characterization of chords used by Composobot,

while relying on previous work in the field, differs significantly from those used by other

systems and will be detailed in section 6.1 below.

Chord progressions are used to construct a Markov transition matrix for each mode

(Major and Minor). Markov states for this matrix consist of the current chord, the

previous chord, and measures of local and global position of the chord within the piece.

The accompaniment of pieces is then analyzed in terms of its rhythm, and a “rhythm

pattern” is built for each half-measure that represents the rhythm of the accompaniment

during that period. These are then built into progressions in the same way that chords

were, and a Markov transition matrix is similarly constructed.

Once Composobot has analyzed the accompaniment of a piece, it will move on to

the melody. Melody will be divided into melodic phrases using a measure of boundary

detection tailored to tonal melody. These phrases are built into progressions and then

analyzed in two very different ways. In the first, each phrase is generalized to a “rhythm

29
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only” representation that abstracts away note values and overall position within a piece,

and these progressions of phrase rhythms are used to calculated a Markov transition

matrix for melodic phrase rhythm patterns. In the second, the pitch classes (e.g., C5 or

A#6) within each phrase are analyzed independently of rhythm, and Markov transition

matrices are constructed for each mode that model the likelihood of a note given the

previous note and the underlying chord at the time.

Finally, all of these Markov transition matrices are formatted and written out to a

text file that can be said to contain the model that Composobot has learned from the

pieces it has observed, and which can subsequently be read by Composobot and used

to compose novel music during the composition step.

6.1 Chord-Labeling

The first step in chord-labeling is to determine how chords will be characterized. Com-

posobot’s representation of chords builds on previous work in the field and, I hope, finds

an ideal middle ground that incorporates the advantages of several different methods

while covering some of their disadvantages.

In section 2.3 we discussed the symbolic aggregate chord characterization (e.g., Am

or Caug7) common in musical notation and the literal characterization (e.g., a5c6e7)

used by Paiement, Eck, and Bengio[7]. Composobot seeks a compromise between the

two extremes by beginning with a small knowledge base of predefined chords from the

symbolic aggregate characterization, dividing pieces into slices of half-measure length,

generating a literal characterization for each slice from the notes in that slice, determin-

ing which of the knowledge base chords the literal chord is “closest” to by 12-dimensional

Euclidean distance, and then removing from the literal characterization all notes that

do not correspond in pitch class to a note in its corresponding knowledge base chord.

Composobot begins with a knowledge base consisting of 60 chords: the 12 Major

triads, the 12 Minor triads, the 12 Major seventh and 12 Minor seventh chords, and

the 12 dominant seventh chords. These chords are represented within Composobot by

12-dimensional binary vectors where each dimension is a pitch class: the chord Cdom7,

for example, is represented by the vector {1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0} which corresponds

to the notes CEGA#.



31

The input piece is divided into time divisions with a length of one half-measure. In

most cases, a literal chord representation for that division is constructed straightfor-

wardly by observing each note that occurs within it. However, in the event that fewer

than three notes occur within a division, that division will instead be labeled with the

chord of the division that precedes it.

Literal chord representations taken from input data need to be compared to the 12-

dimensional knowledge base chord vectors such that a distance can be defined between

them. This requires that observed chords be translated into 12-dimensional pitch class

vectors. That makes this a good time to define the concept of a note’s “loudness”

as adapted from the work of Paiement, Eck, and Bengio[7]. They observe that lower

register notes are more impactful on a listener’s perception of a chord than higher notes,

and that lower notes of the same pitch class tend to have a masking effect on higher

notes of that pitch class.

“Loudness” here has nothing to do with volume. Rather, it’s a measure of a note’s

impact on the perception of the chord it belongs to. For a note n, the pitch class p(n)

of n as defined in Equation 5.4, the octave o(n) of n as defined in Equation 5.5, and ρ

a constant such that 0 < ρ ≤ 1, the loudness l(n) of n is defined as

l(n) = ρo(n) (6.1)

For Composobot’s calculation of loudness, ρ is set at 0.99 by empirical determination.

This means that the differences in loudness between different octaves is considered very

small, but sufficient to break ties.

In the 12-dimensional vector representation of an observed chord, we want the loud-

ness of the “loudest” note of each pitch class to be taken as that chord’s value for that

pitch class. For an m-note chord X = {n1, · · · , nm}, the contribution xi for pitch class

i is defined as

xi = max(l(n), n ∈ {X|p(n) = i}) (6.2)

Then the 12-dimensional vector representation v(X) of the chord X is given by

v(X) = {x1, x2, · · · , x12} (6.3)
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Finally, the distance d(X,Ki) between the observed chord X and the ith knowledge

base chord Ki = {ki1 , ki2 , · · · , ki12} is given by

d(X,Ki) =
√

(x1 − ki1)2 + (x2 − ki2)2 + · · ·+ (x12 − ki12)2 (6.4)

Once the nearest knowledge base chord Kt has been identified, the chord X is

reduced to X ′ such that each note in X ′ has pitch class corresponding to a pitch class

represented by a 1 in Kt.

For example, let X be the literal representation chord c4g4c5d5e5f5g5b5, which

has pitch classes {C,D,E, F,G,B}. This chord would be found to be nearest to the

knowledge base chord {1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1}, which has pitch classes {C,E,G,B}.
Then the reduction step would remove all notes in X with pitch classes in {D,F},
the difference of the two pitch class sets. Removing d5f5 from X, then, produces

X ′ = c4g4c5e5g5b5.

In the event that, like in the above example, the resulting chord contains more than

five notes, the notes with the least loudness- that is, the highest notes- are removed

until only five notes remain. This is done to ensure that observed chords of a certain

high degree of similarity are considered together, and to limit the size of the space

of observed chords. This threshold was determined empirically to optimize capturing

similarity without discarding too much information.

Finally, it’s important to consider the case where the removal step results in there

being just one or two notes in X ′, which is less than ideal for defining a whole chord. In

the event that |X ′| < 3, Composobot will add in notes from the nearest knowledge base

chord Kt until |X ′| = 3 by iteratively adding in notes of the lowest pitch class in Kt not

present in X ′. Notes are added in the fifth octave of their pitch class for simplicity.

This process, which occupies some middle ground between a restricted symbolic

chord representation and a literal representation, helps to address the shortcomings of

both: the space of possible chords is much greater than if it were limited to a relatively

small set of symbolic representations that abstract away octave, the possible chords

capture varied voicings, and the space of possible chords is still much smaller than an

unrestricted literal representation.
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6.2 Chord Progressions

Given that we’ve now sliced up our pieces and labeled the slices with chords, there is a

very easy step we could take to build a chord progression: simply list the names of the

chords in sequence! However, it may not be the worst idea to take a moment to consider

how we’re going to use this progression, what shortcomings that simple list might have,

and how we might get around them.

For that reason, we’re going to zoom out and consider the composition step that we

hope this information retrieval process will inform. The bones of the composition step

will all be Markov processes, and certainly the composition of chord progressions will

begin with a Markov process of some kind on chords. We could construct a Markov

transition matrix that could generate a new chord progression, then, by just putting our

chord labels in a sequential list. Conditional probabilities of a chord following another

chord in sequence could be calculated by observation on these lists. If we do it right,

we should end up with chord transitions that follow smoothly from one another.

If we stop to think about any of our favorite pieces, however, it may become clear

that a general Markov assumption, that a chord depends only on the chord that precedes

it, is going to be a poor one to make here. There is some broader, more global structure

that informs the choice of the next chord in a progression. In particular, it is common

to see a progression broken up into “chord phrases”: progressions of, say, 4 or 8 chords

that repeat throughout a piece. Additionally, we may observe that the end of piece

generally sounds different than the middle of a piece; a final “chord phrase” is more

likely to bring some resolution to a piece than a phrase occurring at some arbitrary

place in the body of the piece.

This implies two pieces of information we would like our system of Markov depen-

dencies to know about the chords it is considering. First, it should consider what I will

call a chord’s local cyclic position: its position within a “chord phrase”, as defined by

dividing the progression sequence into groups of four chords and labeling each chord as

occupying position 1, 2, 3, or 4 within its group.

The second piece of information it should consider is some measure of the chord’s

location in the global structure of the progression. In this case, we consider whether it

falls within the final quartet of chords in the progression: a boolean flag that is true if
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a chord is one of the last four, and false otherwise.

Given this, let’s define our Markov states explicitly, and as consisting of more than

just chord labels. For a Markov state M constructed at position i in a progression,

let Xi denote the current chord at position i, Xi−1 denote the previous chord in the

progression, φ ∈ {1, 2, 3, 4} denote the local cyclic position of Xi, and ω ∈ {0, 1} denote

whether Xi is one of the final four chords of a piece. Then M is defined as

M = {Xi, Xi−1, φ, ω} (6.5)

Note that when i = 1, Xi will be the first chord in a progression and the chord at

position i − 1 does not exist. In this case, Xi−1 will be the symbol S representing the

beginning of a progression. All analyzed and generated progressions, then, will begin

with Markov states where Xi−1 = S.

The progressions that are converted to Markov transition matrices for chords, then,

are calculated directly from these progressions of Markov states.

6.3 Chord Substitution Probabilities

One drawback of any kind of literal chord representation, as we have seen that Com-

posobot employs, is that the space of possible chords is vast, which makes it difficult

to gather sufficient observations of each chord. This is only compounded by our con-

sidering chord progressions as Markov chains. There is likely to be at least one chord

that is seen only once in the corpus, which makes it impossible to directly calculate a

conditional probability of that chord following each other observed chord- for all but

one of those cases, we never saw that succession happen!

Paiement, Eck, and Bengio continue to exert their due share of influence over Com-

posobot’s chord modeling by concocting an ingenious solution to this problem. Rather

than trying to impute conditional probabilities via some kind of smoothing, their model

considers once again the Euclidean distances between chords and uses those distances

to estimate probabilities of substituting one chord for another within a progression[7].

For chords Xi and Xj in a set of s chords, d(Xi, Xj) as defined by Equation 6.4, and

the parameter λ such that 0 ≤ λ <∞, the probability Pi,j of substituting Xi for Xj in
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a progression is given by

Pi,j =
e−λd(Xi,Xj)

s∑
j=1

e−λd(Xi,Xj)

(6.6)

The parameter λ controls the likelihood of substitution overall. When λ = 0, all

chords have an equal probability of being played at any time, since the probability of

substitution is uniform for each pair of chords (including a chord and itself!). As λ

approaches ∞, the probability of any given substitution approaches 0, and no substitu-

tions are made at all. For Composobot’s calculation of substitution probabilities, λ is

set at 5 by empirical determination.

In order to reduce computation and storage, probabilities are calculated only for

pairs of chordsXi, Xj where d(Xi, Xj) is less than some threshold, set at 1.2 by empirical

determination. This prunes only substitutions that would be exceedingly rare, but

reduces multiplicatively the computational demands of calculating probabilities and of

later making substitutions.

Probabilities are calculated for each such pair of chords once all pieces have been

chord labeled. Note that this includes the probability of substituting a chord with itself-

for most values of λ, this probability will dominate the substitution probability space.

This calculation can be computationally demanding depending on the number of chords

observed, but only needs to be performed once per model. The use of these probabili-

ties in making substitutions occurs during the composition step, which is described in

Chapter 7.

The use of substitution probabilities means that every time we observe any chord in

our corpus, we are also observing every other chord in the corpus to the extent described

by the probability of substitution between the two. We don’t need to worry about

calculating every exact conditional probability for some rare chord given any other chord

preceding it, since any chord that succeeds the preceding chord may probabilistically

transform into the rare chord.



36

6.4 Accompaniment Rhythm Patterns

A chord progression suggests which notes are be more likely to be played during each

time division, but it suggests nothing about when those notes appear during a time

division. Are all of the notes played at the same time? Are they sounded once and held,

or are they a rapid succession of sixteenth notes? Are there rests, pauses? And does

any of that depend on the rhythm of the notes in previous time divisions?

To get at this, we will build a Markov transition matrix similar to the one we built

for chord progressions, but for the rhythm patterns within time divisions. Rather than

chords, we will model the progression of rhythm patterns, which are constructed in the

following way.

First, a time division of one-half measure is divided into eight equal portions, each

one-sixteenth note in length. Then an eight-digit string of zeroes is generated. For

each of the eight portions of the time division, we check whether a note’s onset falls

within that portion- if it does, we check its duration. This duration is converted into a

number of sixteenth notes (e.g., a quarter note is four sixteenth notes, and is converted

to the value 4). Then, this value replaces the zero in the generated string at the index

matching its portion.

For example, suppose we have a time division containing a quarter note followed by

two eighth notes such that none of these notes overlap. Then the quarter note at the

beginning of the division is converted to value 4 at position 1; the quarter note halfway

through the eight-portion division is converted to value 2 at position 5; the final quarter

note is converted to value 2 at position 7. The rhythm pattern for this division would

be the string “40002020”.

This generated string not only describes the rhythm of the time division in a recon-

structible way, but also serves as the rhythm label for that division in the same way

that Am7 might serve as the chord label for a division.

The Markov transition matrix for rhythm patterns is in most ways identical to the

one we built for chord progressions. Rather than chords as the first two arguments of a

state it will use rhythm patterns, but states will again include a φ measure of local cyclic

position and an ω measure of global position. Once again, an abstract start-of-piece

symbol S will serve as the “previous rhythm pattern” for the first state in a progression.
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Explicitly, for a Markov state M constructed at position i in a progression, let Ri
denote the current rhythm pattern at position i, Ri−1 denote the previous rhythm

pattern in the progression, φ ∈ {1, 2, 3, 4} denote the local cyclic position of Ri, and

ω ∈ {0, 1} denote whether Ri is one of the final four rhythm patterns of a piece. Then

M is defined as

M = {Ri,Ri−1, φ, ω} (6.7)

The Markov transition matrix for rhythm patterns is calculated directly from the

progression of these states.

6.5 Melodic Phrase Boundary Detection

The problem of appropriately detecting the boundaries between melodic phrases is not

trivial. However, as suggested in Section 2.4, we’re going to get a hand from the work

of David Temperley, who devised a system of what he calls Phrase Structure Preference

Rules (PSPR) for determining the boundaries between melodic phrases[9]. In particular,

I adapt the three rules he calls the Gap Rule, the Phrase Length Rule, and the Metrical

Parallelism Rule and implement them in Composobot to divide a melody into phrases.

The Gap Rule (PSPR1) draws on the intuition that boundaries between melodic

phrases are more likely to occur at longer gaps between the notes in a melody. Recall

that the inter-onset interval (IOI) between two notes is the duration between the start

of one note and the start of the following note, and that the offset-to-onset interval

(OOI) is the duration between the end of one note and the start of the next. Then for

two successive notes ni, ni+1 in a melody, their PSPR1 score is defined as

PSPR1 =
IOI(ni, ni+1) +OOI(ni, ni+1)

IOI
(6.8)

IOI here denotes the mean IOI for all pairs of successive notes in the melody.

The Phrase Length Rule (PSPR2) is derived from the observation that most melodic

phrases tend to be between 6 and 10 notes in length. PSPR2 scores for notes in a melody

are calculated iteratively as phrase boundaries are drawn, so that a note’s PSPR2 score

is based on its index in a list that begins with the first note in the piece not already
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part of a melodic phrase. Seeking to penalize phrase boundaries more the further they

are from the 6 to 10 note range, and letting n denote the index of a note in the sequence

of notes note already in a melodic phrase, a note’s PSPR2 score is defined as

PSPR2 = −|log2(n)− 3| (6.9)

The difference is calculated from 3 because 3 = log2(8), and 8 is equidistant from 6

and 10. The score is negative because a larger distance makes it less likely that a phrase

boundary should be drawn at that note.

The Metrical Parallelism Rule (PSPR3) relies on the assumption that melodic

phrases are more likely to begin on stronger beats of a measure, and more likely to

begin on the same beats as one another. For our purpose, it was observed in the corpus

that most melodic phrases begin exactly at the first beat of a four beat measure, and so

the PSPR3 score seeks to penalize notes more the further they are from the first beat

of the measure. Dividing measures into increments of 16 beats and letting p(n) denote

a note’s position in a piece in 16 beat increments, a note’s PSPR3 score is defined as

PSPR3 = −log2((p(n)− 1)mod16 + 0.99) (6.10)

The addition of 0.99 to the argument prevents logarithms of zero. The score, as

with PSPR2, is negative because a note is less likely to be a phrase boundary the later

in its measure it appears.

A note ni’s overall PSPR score is simply the sum of these rule scores.

PSPR(ni) = PSPR1(ni−1, ni) + PSPR2(ni) + PSPR3(ni) (6.11)

Composobot divides a melody into phrases by first building a list of all notes in

order. It then calculates the PSPR score of every note in that list, finds the note with

the highest PSPR score, and draws the phrase boundary before that note. It stores

every note before the boundary as a phrase and then repeats the process, taking as its

new list the list of all notes not already assigned to a phrase. It iterates through the

melody this way until each note has been assigned to a melodic phrase.

At this point, Composobot will have melodic phrase progression, an ordered list of

melodic phrases that appear in a piece. Doing this with every piece in the corpus gives
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us a series of progressions, and it is from this set of observed melodic phrase progressions

that Composobot will learn what it can about how to build melodies.

6.6 Melodic Phrases: Rhythm

When we were learning from chord progressions, we discussed the relative advantages

of different ways of representing chords. Too general a representation and we have

a nice small set of states but a lot of lost information; too specific a representation

and we can capture dependencies very accurately, but the number of possible states

means the amount of dependencies we’re trying to capture is too large for any corpus

we have available. We sought a middle ground that tried to retain the most important

information without over-bloating the number of possible states.

Here, we must be even more careful. If we try to capture the conditional probability

of one literal melody phrase following another, we’re going to end up with an enormous

space and sparse observations within it: the number of possible melody phrases is

astronomical, and to calculate accurate probabilities of any of them following any other

would require a number of observations that is almost certainly larger than the number

of musical pieces humanity has produced. Needless to say, our corpus is somewhat

smaller than that.

Instead, we will model melody on two levels. First, we will convert every melodic

phrase to a rhythm pattern representation: a series of onset positions and durations that

describe the rhythm of the melodic phrase relative to its own beginning. For example, a

melodic phrase consisting of the pitch-duration-position tuples {(C5, 96, 768), (D5, 96,

864), (B4, 48, 933), (C5, 144, 981)} would be converted to the duration-position rhythm

pattern representation {(96, 0), (96, 96), (48, 192), (144, 240)}. The pitch classes are

abstracted away, the durations remain unchanged, and the positions are all decremented

by the value of the first position in the phrase, leaving all positions relative the start of

the phrase.

Once each phrase is converted, we analyze progressions of rhythm-pattern phrases

and calculate conditional probabilities between them. Probabilities are calculated for

the first phrase in each progression given an abstract “start of piece” symbol, and

probabilities are thereafter calculated for a phrase given the phrase that precedes it. It
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is assumed that many melodic phrases that vary in terms of the pitch classes of their

notes will be the same when analyzed in terms of rhythm alone, and this assumption is

confirmed empirically.

The learning for these rhythm-pattern phrase probabilities is performed on combined

Major and Minor progressions under the assumption that the conditional probabilities

for rhythm patterns alone are independent of mode, which has been supported empiri-

cally.

6.7 Melodic Phrases: Pitch

The pitch classes of a melody can’t be ignored altogether, of course. As discussed

previously, though, we need to make compromises of some kind in order to keep our

state space from outpacing our corpus. To that end, we make one of our more dubious

assumptions: that the pitch class of notes in a melodic phrase are independent of the

rhythmic structure of that phrase. That is, that the specific rhythm pattern of a melodic

phrase has no influence on the progression of the notes within that phrase.

Specifically, the pitch class of a note in a melodic phrase will be assumed to be

dependent on the pitch class of the note preceding it and on the underlying chord at the

point of its onset. We return to considering our larger set of observed melodic phrase

progressions, and not the rhythm form representation of those progressions. Then, for

each phrase in a progression, the conditional probability of the first note’s pitch class

given an abstract “start of phrase” symbol and the underlying chord at its onset position

is calculated, and thereafter, we calculate the conditional probability of a note’s pitch

class given the previous note’s pitch class and the underlying chord and the current

note’s onset position. Probabilities would take the form of P (C5 | “Start”, “Am7”) or

P (A6 | C5, “CM”) where C5 and A6 are pitch classes, “Start” is the abstract “start of

phrase” symbol, and “Am7” and “CM” are the chords at the position where C5 and

A6, respectively, begin.

Note that these conditional probabilities are calculated and stored separately for

Major and Minor modes, following the same assumption that led us to separate Major

and Minor modes for chords: that pitch classes are heavily dependent on the mode of a

piece, and that pieces of different modes behave very differently when it comes to pitch
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class.

6.8 Model Preparation and Representation

At this point, Composobot has constructed a whole mess of matrices, and it would

behoove both Composobot and we the readers to pause and try to make sense of it all.

We’ve constructed two Markov transition matrices for chord progressions, one for

each mode (Major and Minor), where each state contains the current chord, previous

chord, local cyclic position of the current chord, and global position of the current chord.

We also constructed a matrix representing the probabilities of substituting any given

chord for any other chord.

We produced one Markov transition matrix for accompaniment rhythm patterns,

and one Markov transition matrix for melody phrase rhythm patterns.

Finally, we produced two Markov transition matrices for melody pitch values, one

for each mode, where each pitch value depends on the preceding pitch and the chord

underlying the current pitch, for a total of seven matrices or five types of matrices.

Figure 6.1: Model Matrices

Matrix Description

Chord Progressions (M) Markov transition matrix of chords in C Major

Chord Progressions (m) Markov transition matrix of chords in C Minor

Chord Substitutions Probability distributions of substituting one
chord for another

Accompaniment Rhythm
Patterns

Markov transition matrix of accompaniment
rhythm patterns

Melody Rhythm Patterns Markov transition matrix of melody rhythm pat-
terns

Melody Pitch (M) Markov transition matrix of melody pitch values
in C Major

Melody Pitch (m) Markov transition matrix of melody pitch values
in C Minor

These seven matrices are written out to a text file using their literal representation

in Julia code, one matrix per line. Composobot will then be able to use any such model
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for composition by specifying the name of the text file, reading it in, and storing each

line as a matrix, since the line is represented in Julia code. This intermediate step,

storing a model as a text file, allows Composobot to learn a model only once and then

compose with it as many times as they like!

Now that the model has been learned, we’re ready to move on to fun part: algorith-

mic composition! In the next chapter we’ll see how Composobot, as if by magic, uses

the model they’ve learned to compose a novel musical piece!



Chapter 7

Composobot: Composition

We’ve assembled a corpus, preprocessed it, and even learned a model from it. No mean

feat, that, and nobody could blame Composobot for being just a little bit tuckered out.

Fortunately, Composobot lives for the glory of triumph and would not hesitate to choose

death over defeat, unwavering in their zeal for seeing tasks through to completion. They

are, in fact, positively champing at the bit to begin their climactic third act: algorithmic

composition of novel music based on the model they have learned!

In this chapter we’ll explore the details of that process step by step. We’ll begin by

discussing some of the parameter selection that will inform the final form of the compo-

sition, and then proceed through the mechanics of composition in a manner mirroring

that of our exploration of the learning process. We will be looking at how each of the

five types of matrices we wrote out to a model in Chapter 6 is used, sequentially, to

probabilistically build a composition.

7.1 Parameter Selection

Before Composobot gets started on actually putting their novel musical piece together,

there are few decisions that need to be made, a few parameters that need to be set

that are not based on the patterns Composobot has learned. These decisions are rela-

tively minor and could be made stochastically, but Composobot values the autonomy

of humans above all else and so elects to solicit the preferences of their users.

These composition parameters are: the desired mode, transposition offset, and

43
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length of the piece to be composed; the name of the model file to be used; a name

for the final MIDI file that will contain the composed piece.

Figure 7.1: Composition Parameters

Parameter Description

Mode Major or Minor

Transposition Offset Specifies key by number of half-steps to trans-
pose up (positive) or down (negative)

Length Desired length of piece in number of measures

Model Filename Name of model file generated during learning

Output Filename Desired name of output MIDI file

“Mode” specifies whether the composition should be Major or Minor, and is entered

as a string. “Transposition Offset” is entered as a positive or negative integer, and the

pitch of every note in the piece will be transposed by exactly that value (from the key

of C). “Length” sets the length of the composition in number of measures in 4
4 time

and is a positive integer. “Model Filename” takes the literal name of the model file

generated at the conclusion of the learning step- note that this allows the storage of any

number of model files that be called at will to produce compositions. Finally, “Output

Filename” is the desired file name for the MIDI file that the new composition will be

written to.

Once these parameters have been selected, Composobot is ready to take the reins

and ride: it’s time to compose some music!

7.2 Chord Progression

Assuming that all parameters described in the previous section have been chosen, Com-

posobot will proceed to load the model specified by reading in the raw text of the model

file and then splitting it into seven matrices by the “newline” character, the normally

hidden character in a text file that specifies when to start a new line of text. These

seven matrices are represented literally in the text file by their Julia code, and so can

be read into memory straightforwardly.

Depending on the mode (Major or Minor) that has been selected, Composobot will
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load the Chord Progression Markov transition matrix for that mode. This matrix, as

described previously, represents chords as “chord states”. This representation is detailed

in Section 6.2 and described by Equation 6.5- briefly, a state Mi consists of the current

chord (Xi), previous chord (Xi−1), local position in a repeating 4-cycle (φ ∈ {1, 2, 3, 4}),
and global position (ω ∈ {0, 1}) in terms of whether it is near the end of a piece.

The progression matrix contains conditional probabilities of selecting chord states

given the chord state that was selected previously: P (Mi|Mi−1). Some subset of these

probabilities take the form P (Mi|S), where S is an abstract “Start State” and P (Mi|S)

represents the observed probabilities of a chord state appearing as the very first chord

state in a progression.

To generate the first chord in the progression, Composobot samples from the P (Mi|S)

probabilities according to their distribution. Some chord state will be selected, and its

corresponding chord will be the first chord in the generated progression. Thereafter,

each new chord state will be selected by sampling from the distribution of chord states

observed to succeed the previously selected state.

Let l represent the desired number of chords in the piece, defined as twice the

value of the desired length of the piece in measures (chords occupy a space of one half

measure). Given some already selected chord state Mi = {Xi, Xi−1, φ, ω}, the value

φ′ = ((φ + 1)mod4) + 1, the value ω′ = 1 if l − (i + 1) ≤ 4 and 0 otherwise, then

Mi+1 is constructed by sampling from the distribution of the following probabilities

over all chords Xj : P (Xj |Xi, φ
′, ω′). The selected chord is denoted Xi+1, and Mi+1 =

{Xi+1, Xi, φ
′, ω′}.

The generated chord progression is an ordered list of chords so selected. Again, l

is the desired length of the piece in number of chords: the generated chord progression

is given by P = {X1, · · · , Xl}. The other values of the chord states (e.g., φ and ω)

are used only to generate these chords, and are not themselves stored after the ordered

chord progression is generated.

7.3 Chord Substitution

Composobot’s soul is a dancing star: now that a chord progression has been generated,

Composobot longs to add a measure of beautiful chaos to the mix. Using the matrix of
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substitution probabilities read in from the model, Composobot will consider each chord

Xi in the generated progression P one by one and probabilistically substitute it with

another chord. These probabilities were generated using the “distance” between chords,

as described in section 6.3.

For each chord in the generated progression, Composobot will take a single random

sample according to that chord’s distribution of substitution probabilities, and replace

the initial chord with the new, substituted chord. As mentioned in section 6.3, the

probability of a chord being substituted with itself will usually dominate the probability

space of its substitutions, with the result that most chords in the progression will not

be observably changed by this substitution.

For example, consider a chord Xi ∈ P. Suppose for simplicity that only four chords

were observed in a corpus- a preposterously low number suggested only for example.

Call them {X1, X2, X3, X4}, and suppose Xi = X1. Suppose that X1 and X2 are

pretty similar chords: CM and CM7, maybe. X3 and X4, on the other hand, are very

dissimilar to X1: F#m or A#9 or something. Then the substitution probability vector

for X1 might look something like {0.91, 0.083, 0.003, 0.004}, where the jth position in

the substitution vector represents the probability that X1 will be replaced by Xj . Very

probably, then, Composobot would replace Xi = X1 with X1 and no observable change

would take place. However, it may reasonably replace Xi = X1 with X2, which does

result in an observable change.

Note that this substitution is based entirely on a calculated “distance” between

the chords, and not on any observed behavior in the corpus of analyzed pieces. This

means that, after substitution, some Xk might follow some Xj in the generated chord

progression, despite Xk never being observed to follow Xj in any of the pieces in the

corpus. As discussed in Section 6.3, this allows us to capture a much larger share

of musical patterns without requiring a correspondingly enormous corpus of musical

pieces to analyze. It also allows us to occasionally be surprised by beautifully chaotic

and limited dissonance!

Composobot will make exactly one pass through the chord progression, probabilisti-

cally substituting every chord. Once this has been done, the chord progression is final,

and it’s time to translate that abstract progression into an actual series of notes!
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7.4 Accompaniment: Rhythm and Expression

Recall that in an earlier chapter we talked about chords acting as “central polarities”

for the notes in a time division, rather than an explicit blueprint describing which notes

will be sounded and when. Clearly, though, if Composobot is going to actually compose

music they can play, they’re going to need to make some “which” and “when” decisions!

The question of when notes will be played is answered by the Accompaniment

Rhythm Patterns matrix in our model. Through a similar Markov process to that used

to generate a chord progression, Composobot generates a rhythm pattern progression

that covers the entire specified length of the piece being composed, and the patterns in

that progression describe the rhythm of the notes to be played during their respective

time divisions.

The question of which notes will be played is answered in a relatively straightforward

and probabilistic way. As Temperley points out, the tonic, or root note, of a chord is

more likely to fall on stronger and even beats of a measure: more likely to occur at

whole note intervals than half, more likely at half than quarter, etc. Thirds and fifths,

similarly, are more likely to fall on strong even beats[9]. As no one would blame you for

having forgotten, chords were pruned to a size of at most five notes during the learning

process. Accompaniment notes can therefore be selected from a set of notes whose size

is known to be at most 5, and can be selected probabilistically based on the position of

that note within its time division.

Composobot does just this. Given a rhythm pattern in the form of an eight-digit

string, a note is selected for each entry according to four different distributions: one for

notes in position 1, one for notes in position 5, another for notes in positions 3 and 7,

and a fourth for notes in the remaining positions of 2, 4, 6, and 8. The distributions

choose notes according to their “loudness”, or impactfulness in the identity of the chord,

as measured by Equation 6.1. The most impactful notes are those more likely to fall on

strong even beats, and are more likely to be selected by the earlier distributions than

the later ones. The least impactful notes, conversely, are more likely to be selected by

the later distributions than the earlier. It is worth noting that at each position, the

number of notes to be played is also probabilistically determined according to the same

distribution- at least one note will always be selected, but as many as three notes might
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be.

The execution of this step proceeds like so: using the Accompaniment Rhythm

Patterns matrix from the model, Composobot generates a rhythm pattern progression

equal in length to the chord progression that has already been generated. Let this length

be denoted l; then for each i ∈ {1, · · · , l}, Composobot generates notes according to

rhythm pattern Ri using notes from the chord Xi, and adds those notes, in order, to a

blank MIDI track.

Once this is done, we have a MIDI track containing our whole accompaniment!

We could export it right now and listen to it, but let’s treat ourselves by patiently

maintaining our anticipation while Composobot generates a melody for these notes to

accompany.

7.5 Melodic Phrase Progression

Melody is generated in a way analogous to the generation of accompaniment we’ve

already seen. We’ll start by generating a progression of melody phrase rhythm patterns

using the Melody Phrase Rhythm Pattern matrix from our model. The biggest difference

in the processes is that we don’t know apriori how many melody phrase rhythm patterns

to generate!

Recall that chords in the chord progression had a length of exactly one half measure.

If we are generating a 16 measure piece, for example, then we know that we need to

generate exactly 32 chords in progression, and we will have covered the entire piece.

Melody phrase rhythm patterns, on the other hand, do not have a uniform length. Their

length was determined according to the Phrase Structure Preference Rules detailed in

Section 6.5, which detected and defined boundaries according to rhythmic gaps between

notes, the number of notes in a phrase so far, and the metric location of the possible

boundary. Not only do none of these rules translate directly into a metric length, but

these rules weight possible boundaries probabilistically rather than deterministically

defining them. There just isn’t any way for us to know how long our phrases are going

to be, and how many of them we’ll need.

Composobot accounts for this in a relatively simple way. Starting at the beginning

of a piece and as in Chord Progression generation, Composobot will generate a first
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melody rhythm pattern according to the distribution of conditional probabilities of

melody rhythm patterns given an abstract start symbol. Melody rhythm patterns will

continue to be generated according to the Melody Phrase Rhythm Pattern transition

matrix. Each new melody rhythm pattern will be considered to start at the beginning

of the next measure following the preceding pattern, since melody rhythm patterns are

defined relative to the start of a measure, which is to say that the patterns were learned

such that they model start-of-measure rests and so can naively be aligned with measures

here, in the composition step.

As Composobot generates a progression of melody rhythm patterns, they keep track

of how many measures have been covered by the progression so far. When a new pattern

would be generated that begins in the kth measure of the piece, where k is greater than

the number of measures covered by the chord progression, that rhythm pattern is instead

discarded and the Melodic Phrase Progression is considered complete.

At this point we have the skeleton of melody in terms of rhythm. All that remains is

to assign notes to that rhythmic skeleton, and we’ll have a composition ready to listen

to!

7.6 Melody

This is where we bring it all together. At this point, we have a chord progression that

covers the entire piece, as well as a progression of melodic phrases in terms of rhythm.

Now we will use both of those progressions, together with the Melody Pitch matrix from

our model corresponding to the selected Mode of our piece, to build a final melody.

Recall that entries in the Melody Pitch transition matrix are calculated conditional

probabilities of the form P (Pitch | PrecedingP itch, UnderlyingChord): for example,

P (C5 | A4, “Am”).

For each melody rhythm pattern in our progression, Composobot will select the

chord from the chord progression that corresponds to the point in the piece where the

melody rhythm pattern begins, call it X1. Then the first pitch p1 will be selected

according to the distribution for P (pj | S, X1), where S is the abstract start symbol

and j is the number of observed pitches satisfying the conditions. For each subsequent

position i in a melody rhythm pattern, the chord progression will again be examined
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to determine the current chord Xi at that point, and the next pitch will be selected

according to P (pj | pi−1, Xi). This proceeds until the last pitch for each melody rhythm

pattern is selected.

Because of the chord substitution step Composobot has performed, as described in

Section 7.3, it is possible that some combination of pitch and chord we are considering

was never observed in the corpus, and so is not found in the Melody Pitch matrix. In

the event that there are no pitches pj satisfying a set of conditions, which is to say that

j = 0 for that set of conditions, then the conditions are relaxed and the next pitch is

sampled from P (pj | pi−1). This has been observed to occur only very rarely, and is a

compromise that both Composobot and the author are comfortable with.

Once this step is complete, we have it all: a chord progression that has been con-

verted into a list of accompaniment notes, and a melody that has both rhythm and

pitch. If we’ve done our job right, the melody has been composed so that it comple-

ments the accompaniment in the same way melody complemented accompaniment in

our corpus. If we’ve done our job right, we’ve created music!

The very final step that Composobot performs, their victory lap if you will, is to

take the list of accompaniment notes and the list of melody notes and write them to

two MIDI tracks, and then write those MIDI tracks out to a MIDI file. This file will

play those notes as audio, and we can finally listen to what we’ve been working so hard

to produce: a novel musical composition!
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Conclusions and Discussion

At this point, a woeful tragedy must be bemoaned: Composobot’s exciting final output

is audio, which lends itself not well at all to enjoyment via the written page. How can we

enjoy the delightful denouement of discussion without the triumphant climax of hearing

the music Composobot has labored so laboriously to produce?

There are several options available to us here. The first would be to simply not offer

any output; this is the worst option by far, and nobody would be more disappointed

than Composobot and their author, who indulge in some pride in what Composobot is

capable of producing. Bad option, let’s toss it.

The second is to host some examples of output somewhere on the internet and

make them available for download. This sounds great, and is certainly done: exam-

ples of input and output MIDI files can be found at http://www.d.umn.edu/ mhamp-

ton/Composobot/. However, this is unlikely to be sufficient. In the course of the

research that informs this work, we discovered that many works host such files, presum-

ably with the very best of intentions, only to find that domains expire and pages cease

to exist, being more susceptible than the written page to time’s inexorable flight. If you,

the reader of some future age, find yourself so rebuffed, I hope there is some comfort in

knowing that we predicted your disappointment and made an effort to forestall it.

Due to this unreliability, we will also undertake a third approach. In Appendix C

you will find sample output in the form of sheet music. This format has its limitations:

unless you have some musical training, it will be difficult to translate what is on the page

into music; unless you have substantial musical training, it will probably be impossible
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to read the output and have the experience of hearing the music directly. In the parlance

we are now so accustomed to thinking in, the musical information here is durably stored,

but difficult to retrieve.

The final recourse, the most powerful as well as the least accessible, is found in

Appendix A: Composobot’s complete and unabridged Julia source code. In the final

extremity of desperation to experience Composobot’s output for yourself, it would be

possible to compile this code and have a Composobot of your very own. You could

feed it all of the well-formatted MIDI files you want and experience output nobody else

ever will. Whether the experience is more edifying when shared or when exclusive is

outside of the scope of this work; that question is a journey whose peaks and valleys

are uncharted.

8.1 Discussion

At the outset of this grand endeavor, the aim was to evaluate whether these techniques,

some inspired by work that has come before and some invented entirely for this un-

dertaking, could be combined in a way that could both learn essential patterns in how

music is composed and use those learned patterns to compose novel musical pieces. The

answer to this is a resounding affirmative: Composobot works, and that discovery is

unspeakably edifying!

However, there is a higher bar that we hoped to leap, a grander aspiration and more

interesting question: how much of the magic that is in the music we love is also in the

music Composobot creates? The answer to this one is necessarily subjective, but I will

offer my own subjective appraisal, as I expect you also shall. That answer is something

of a relief to Composobot’s author, and not unexpected: some of the magic is there,

and some of it isn’t. Composobot’s output sounds like music, and for the most part it

is pleasant to listen to, but it lacks something as well.

Much in the way that words can be strung together in a way that is aesthetically

satisfying, creating a sort of poetry, even if the words are chosen solely for their phonemic

properties and not to convey a message of any sort, Composobot’s compositions are

pleasant to listen to, but similarly convey no real message. Composobot has learned the

form and structure of poetry, if you will, which is far from nothing- certainly I don’t
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intend to diminish Composobot’s accomplishments or the significance of their results.

Nevertheless, and unsurprisingly, Composobot seems to have nothing to say with the

beautiful structure they have learned, no message to convey. Some of the magic, it

would seem, is not there.

On the other hand, and as we discussed in the introduction, not all of music’s magic

is in the music itself: some large share of the magic is being performed by the listener!

Humans bring their own subtext to every story, and everything they see becomes a story

about their subtext. We see faces in every knot of wood, hear malice in the rumble

of thunder, bask in the benevolence expressed by the lazy clouds of a summer sky.

Anecdotally, nobody who has heard Composobot’s output without knowing its origin

has expressed that it’s their new favorite music, but neither have they experienced it

as purposeless noise, and some have expressed an enjoyment of the music and its style.

I emphasize style because style, in some sense, implies intention of selection, a series

of aesthetic choices that in itself conveys a message of sorts. In the words of Douglas

Hofstadter[17],

Perhaps works of art are trying to convey their style more than anything

else. In that case, if you could ever plumb a style to its very bottom, you

could dispense with the creations in that style.

An idea whose recursive beauty is worthy of Dr. Hofstadter: style is both the means

of conveying the message and the message itself. In which case, who am I to say that

Composobot has nothing to say with the style they have learned? Perhaps style is

enough!

Nevertheless, Composobot has its limitations. Even if style is the message, there are

ways Composobot could be improved and more of the style present in its training pieces

captured. Some of those avenues are likely hidden to me, or I would have pursued more

of them in Composobot’s creation, but some are clear and known.

The first extension I would propose for Composobot or a program like them is a

generalization of timing. Currently, Composobot assumes every piece they read is in 4
4

time, which has required that every piece in their training corpus be in 4
4 time. How-

ever, Temperley proposes an outline of a method for algorithmically detecting the time

signature of a piece by considering the relative conditional probabilities of different
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time signatures given the rhythm of the notes in the piece[8]. Implementing detection

of time signature in Composobot’s preprocessing step would be relatively straightfor-

ward, and my belief is that implementing variable time signature in the learning and

composition steps would involve interesting generalization problems that, ultimately,

would not break anything. This would be the very next improvement I would make to

Composobot.

Another opportunity is in the way Composobot models local and global positions.

Local position as a recurring count and global position as a binary measure of close

proximity to the end of a piece are somewhat crude measures. I believe that more

gradual measures could be devised that better capture the patterns those metrics seek

to measure. It would be interesting to explore what those measures might be, and how

they would change the compositions Composobot produces.

Finally, I would aspire to explore the idea of motif , the recurrence of melodic themes

or phrases within a piece. It would be interesting to consider the detection of motif

within a piece, and a model for the way an abstract motif is used to generate variations

on itself within a piece’s melody. It’s possible that Composobot could be extended to

generate a motif for a piece it is composing, and use that motif to inform the selection

of melody rhythms and pitches during the composition step. This is somewhat less

straightforward an extension, but certainly interesting and worthy of consideration.

Composobot ties together a history of insights from music theory, a breadth of ideas

about music information retrieval, and a synthesis of those insights and ideas into a

program that composes novel music. Whatever their limitations, and even regardless

of the personal triumphs of the individual pieces they’ve composed, Composobot has

accomplished an important thing: demonstrating to you, and to me, and even to them-

self, that this thing is possible, that some significant part of the magic that is in music,

some part of the magic that is in us, can be captured this way.
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Appendix A

Composobot Source Code

What follows is the unabridged raw Julia source code for Composobot, which is entirely

the original work of the author. This code is inadequately commented to be easily

understood by reading it directly, and I would recommend that expectations on that

front be kept reasonable and moderate. That said, everything Composobot is and does

is contained in this code, and I invite anyone to use the whole or any part of this code

for any purpose whatsoever, excepting the limitation of anyone else’s use. Not all ideas

are magnificent, but all ideas deserve to live free.
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In [ ]: using MIDI 

Types
In [ ]: type KBMode 

   modename::String #Name of Mode (eg Minor) 
   keys::Array #Array of 12 KBKey objects 

end 

In [ ]: type KBKey 
   keyname::String #Name of key (eg F) 
   dist::Array #1x12 vector representing probability distribution of notes for this key 

end 

In [ ]: type KBChord 
   tonic::String #(eg A) 
   mode::String #(mM7) 
   rawname::String #(eg Am, C7) 
   rep::Array #Notes of given chord 

end 

In [ ]: type VectorNote 
   keyname::String 
   vector::Array 

end 

In [ ]: type inputChord 
   name::String 
   vector::Array 
   label::String 

end 

In [ ]: type inputChordList 
   chords::Array{inputChord} 

end 

In [ ]: type inputChordProgression 
   chords::inputChordList 
   startTimes::Array{Any} 
   endTimes::Array{Any} 

end 

In [ ]: type chordDist 
   targetchord::inputChord 
   distance::Float64 

end 

In [ ]: type chordDistances 
   name::inputChord 
   distances::Array{chordDist} 

end 

In [ ]: type chordDistanceList 
   list::Array{chordDistances} 

end 

In [ ]: type chordSubProbs 
   chord::inputChord 
   probabilities::Array 

end 

In [ ]: type chordSubProbList 
   probabilities::Array{chordSubProbs} 
   chordlist::inputChordList 

end 
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In [ ]: type cpkbEntry 
   chordprior::Array 
   localmetric::Int 
   last::Int 
   uniqueID::String 
   dist::Array 

end 

Knowledge Base

Major Mode

In [ ]: KBMode_Major = KBMode("Major",Array{KBKey}(12)); 
KBKey_CM = KBKey("C",[0.32, 0.01, 0.03, 0.01, 0.22, 0.04, 0.01, 0.225, 0.01, 0.03, 0.07, 0.025]); 
KBKey_CsM = KBKey("C#",[0.025, 0.32, 0.01, 0.03, 0.01, 0.22, 0.04, 0.01, 0.225, 0.01, 0.03, 0.07]); 
KBKey_DM = KBKey("D",[0.07, 0.025, 0.32, 0.01, 0.03, 0.01, 0.22, 0.04, 0.01, 0.225, 0.01, 0.03]); 
KBKey_DsM = KBKey("D#",[0.03, 0.07, 0.025, 0.32, 0.01, 0.03, 0.01, 0.22, 0.04, 0.01, 0.225, 0.01]); 
KBKey_EM = KBKey("E",[0.01, 0.03, 0.07, 0.025, 0.32, 0.01, 0.03, 0.01, 0.22, 0.04, 0.01, 0.225]); 
KBKey_FM = KBKey("F",[0.225, 0.01, 0.03, 0.07, 0.025, 0.32, 0.01, 0.03, 0.01, 0.22, 0.04, 0.01]); 
KBKey_FsM = KBKey("F#",[0.01, 0.225, 0.01, 0.03, 0.07, 0.025, 0.32, 0.01, 0.03, 0.01, 0.22, 0.04]); 
KBKey_GM = KBKey("G",[0.04, 0.01, 0.225, 0.01, 0.03, 0.07, 0.025, 0.32, 0.01, 0.03, 0.01, 0.22]); 
KBKey_GsM = KBKey("G#",[0.22, 0.04, 0.01, 0.225, 0.01, 0.03, 0.07, 0.025, 0.32, 0.01, 0.03, 0.01]); 
KBKey_AM = KBKey("A",[0.01, 0.22, 0.04, 0.01, 0.225, 0.01, 0.03, 0.07, 0.025, 0.32, 0.01, 0.03]); 
KBKey_AsM = KBKey("A#",[0.03, 0.01, 0.22, 0.04, 0.01, 0.225, 0.01, 0.03, 0.07, 0.025, 0.32, 0.01]); 
KBKey_BM = KBKey("B",[0.01, 0.03, 0.01, 0.22, 0.04, 0.01, 0.225, 0.01, 0.03, 0.07, 0.025, 0.32]); 
KBMode_Major.keys=[KBKey_CM,KBKey_CsM,KBKey_DM,KBKey_DsM,KBKey_EM,KBKey_FM,KBKey_FsM,KBKey_GM,KBKey_GsM,KBKey_AM,
KBKey_AsM,KBKey_BM]; 

Minor Mode

In [ ]: KBMode_Minor = KBMode("Minor",Array{KBKey}(12)); 
KBKey_Cm = KBKey("C",[0.17, 0.01, 0.13, 0.17, 0.01, 0.12, 0.01, 0.16, 0.1, 0.02, 0.03, 0.07]); 
KBKey_Csm = KBKey("C#",[0.07, 0.17, 0.01, 0.13, 0.17, 0.01, 0.12, 0.01, 0.16, 0.1, 0.02, 0.03]); 
KBKey_Dm = KBKey("D",[0.03, 0.07, 0.17, 0.01, 0.13, 0.17, 0.01, 0.12, 0.01, 0.16, 
0.1, 0.02]); 
KBKey_Dsm = KBKey("D#",[0.02, 0.03, 0.07, 0.17, 0.01, 0.13, 0.17, 0.01, 0.12, 0.01, 
0.16, 0.1]); 
KBKey_Em = KBKey("E",[0.1, 0.02, 0.03, 0.07, 0.17, 0.01, 0.13, 0.17, 0.01, 0.12,  
0.01, 0.16]); 
KBKey_Fm = KBKey("F",[0.16, 0.1, 0.02, 0.03, 0.07, 0.17, 0.01, 0.13, 0.17, 0.01,  
0.12, 0.01]); 
KBKey_Fsm = KBKey("F#",[0.01, 0.16, 0.1, 0.02, 0.03, 0.07, 0.17, 0.01, 0.13, 0.17,  
0.01, 0.12]); 
KBKey_Gm = KBKey("G",[0.12, 0.01, 0.16, 0.1, 0.02, 0.03, 0.07, 0.17, 0.01, 0.13,  
0.17, 0.01]); 
KBKey_Gsm = KBKey("G#",[0.01, 0.12, 0.01, 0.16, 0.1, 0.02, 0.03, 0.07, 0.17, 0.01,  
0.13, 0.17]); 
KBKey_Am = KBKey("A",[0.17, 0.01, 0.12, 0.01, 0.16, 0.1, 0.02, 0.03, 0.07, 0.17, 
0.01, 0.13]); 
KBKey_Asm = KBKey("A#",[0.13, 0.17, 0.01, 0.12, 0.01, 0.16, 0.1, 0.02, 0.03, 0.07, 
0.17, 0.01]); 
KBKey_Bm = KBKey("B",[0.01, 0.13, 0.17, 0.01, 0.12, 0.01, 0.16, 0.1, 0.02, 0.03, 
0.07, 0.17]); 
KBMode_Minor.keys=[KBKey_Cm,KBKey_Csm,KBKey_Dm,KBKey_Dsm,KBKey_Em,KBKey_Fm,KBKey_Fsm,KBKey_Gm,KBKey_Gsm,KBKey_Am,
KBKey_Asm,KBKey_Bm]; 

Major Chords
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In [ ]:

In [ ]: xKBChord_CM = KBChord("C","M","CM",[1,0,0,0,1,0,0,1,0,0,0,1]); 
xKBChord_CsM = KBChord("C#","M","C#M",[1,1,0,0,0,1,0,0,1,0,0,0]); 
xKBChord_DM = KBChord("D","M","DM",[0,1,1,0,0,0,1,0,0,1,0,0]); 
xKBChord_DsM = KBChord("D#","M","D#M",[0,0,1,1,0,0,0,1,0,0,1,0]); 
xKBChord_EM = KBChord("E","M","EM",[0,0,0,1,1,0,0,0,1,0,0,1]); 
xKBChord_FM = KBChord("F","M","FM",[1,0,0,0,1,1,0,0,0,1,0,0]); 
xKBChord_FsM = KBChord("F#","M","F#M",[0,1,0,0,0,1,1,0,0,0,1,0]); 
xKBChord_GM = KBChord("G","M","GM",[0,0,1,0,0,0,1,1,0,0,0,1]); 
xKBChord_GsM = KBChord("G","M","G#M",[1,0,0,1,0,0,0,1,1,0,0,0]); 
xKBChord_AM = KBChord("A","M","AM",[0,1,0,0,1,0,0,0,1,1,0,0]); 
xKBChord_AsM = KBChord("A#","M","A#M",[0,0,1,0,0,1,0,0,0,1,1,0]); 
xKBChord_BM = KBChord("B","M","BM",[0,0,0,1,0,0,1,0,0,0,1,1]); 

Minor Chords

In [ ]: KBChord_Cm = KBChord("C","m","Cm",[1,0,0,1,0,0,0,1,0,0,0,0]); 
KBChord_Csm = KBChord("C#","m","C#m",[0,1,0,0,1,0,0,0,1,0,0,0]); 
KBChord_Dm = KBChord("D","m","Dm",[0,0,1,0,0,1,0,0,0,1,0,0]); 
KBChord_Dsm = KBChord("D#","m","D#m",[0,0,0,1,0,0,1,0,0,0,1,0]); 
KBChord_Em = KBChord("E","m","Em",[0,0,0,0,1,0,0,1,0,0,0,1]); 
KBChord_Fm = KBChord("F","m","Fm",[1,0,0,0,0,1,0,0,1,0,0,0]); 
KBChord_Fsm = KBChord("F#","m","F#m",[0,1,0,0,0,0,1,0,0,1,0,0]); 
KBChord_Gm = KBChord("G","m","Gm",[0,0,1,0,0,0,0,1,0,0,1,0]); 
KBChord_Gsm = KBChord("G","m","G#m",[0,0,0,1,0,0,0,0,1,0,0,1]); 
KBChord_Am = KBChord("A","m","Am",[1,0,0,0,1,0,0,0,0,1,0,0]); 
KBChord_Asm = KBChord("A#","m","A#m",[0,1,0,0,0,1,0,0,0,0,1,0]); 
KBChord_Bm = KBChord("B","m","Bm",[0,0,1,0,0,0,1,0,0,0,0,1]); 

In [ ]: xKBChord_Cm = KBChord("C","m","Cm",[1,0,0,1,0,0,0,1,0,0,1,0]); 
xKBChord_Csm = KBChord("C#","m","C#m",[0,1,0,0,1,0,0,0,1,0,0,1]); 
xKBChord_Dm = KBChord("D","m","Dm",[1,0,1,0,0,1,0,0,0,1,0,0]); 
xKBChord_Dsm = KBChord("D#","m","D#m",[0,1,0,1,0,0,1,0,0,0,1,0]); 
xKBChord_Em = KBChord("E","m","Em",[0,0,1,0,1,0,0,1,0,0,0,1]); 
xKBChord_Fm = KBChord("F","m","Fm",[1,0,0,1,0,1,0,0,1,0,0,0]); 
xKBChord_Fsm = KBChord("F#","m","F#m",[0,1,0,0,1,0,1,0,0,1,0,0]); 
xKBChord_Gm = KBChord("G","m","Gm",[0,0,1,0,0,1,0,1,0,0,1,0]); 
xKBChord_Gsm = KBChord("G","m","G#m",[0,0,0,1,0,0,1,0,1,0,0,1]); 
xKBChord_Am = KBChord("A","m","Am",[1,0,0,0,1,0,0,1,0,1,0,0]); 
xKBChord_Asm = KBChord("A#","m","A#m",[0,1,0,0,0,1,0,0,1,0,1,0]); 
xKBChord_Bm = KBChord("B","m","Bm",[0,0,1,0,0,0,1,0,0,1,0,1]); 

Dominant7 Chords

In [ ]: KBChord_C7 = KBChord("C","7","C7",[1,0,0,0,1,0,0,1,0,0,1,0]); 
KBChord_Cs7 = KBChord("C#","7","C#7",[0,1,0,0,0,1,0,0,1,0,0,1]); 
KBChord_D7 = KBChord("D","7","D7",[1,0,1,0,0,0,1,0,0,1,0,0]); 
KBChord_Ds7 = KBChord("D#","7","D#7",[0,1,0,1,0,0,0,1,0,0,1,0]); 
KBChord_E7 = KBChord("E","7","E7",[0,0,1,0,1,0,0,0,1,0,0,1]); 
KBChord_F7 = KBChord("F","7","F7",[1,0,0,1,0,1,0,0,0,1,0,0]); 
KBChord_Fs7 = KBChord("F#","7","F#7",[0,1,0,0,1,0,1,0,0,0,1,0]); 
KBChord_G7 = KBChord("G","7","G7",[0,0,1,0,0,1,0,1,0,0,0,1]); 
KBChord_Gs7 = KBChord("G","7","G#7",[1,0,0,1,0,0,1,0,1,0,0,0]); 
KBChord_A7 = KBChord("A","7","A7",[0,1,0,0,1,0,0,1,0,1,0,0]); 
KBChord_As7 = KBChord("A#","7","A#7",[0,0,1,0,0,1,0,0,1,0,1,0]); 
KBChord_B7 = KBChord("B","7","B7",[0,0,0,1,0,0,1,0,0,1,0,1]); 

KBChord_CM = KBChord("C","M","CM",[1,0,0,0,1,0,0,1,0,0,0,0]); 
KBChord_CsM = KBChord("C#","M","C#M",[0,1,0,0,0,1,0,0,1,0,0,0]); 
KBChord_DM = KBChord("D","M","DM",[0,0,1,0,0,0,1,0,0,1,0,0]); 
KBChord_DsM = KBChord("D#","M","D#M",[0,0,0,1,0,0,0,1,0,0,1,0]); 
KBChord_EM = KBChord("E","M","EM",[0,0,0,0,1,0,0,0,1,0,0,1]); 
KBChord_FM = KBChord("F","M","FM",[1,0,0,0,0,1,0,0,0,1,0,0]); 
KBChord_FsM = KBChord("F#","M","F#M",[0,1,0,0,0,0,1,0,0,0,1,0]); 
KBChord_GM = KBChord("G","M","GM",[0,0,1,0,0,0,0,1,0,0,0,1]); 
KBChord_GsM = KBChord("G","M","G#M",[1,0,0,1,0,0,0,0,1,0,0,0]); 
KBChord_AM = KBChord("A","M","AM",[0,1,0,0,1,0,0,0,0,1,0,0]); 
KBChord_AsM = KBChord("A#","M","A#M",[0,0,1,0,0,1,0,0,0,0,1,0]); 
KBChord_BM = KBChord("B","M","BM",[0,0,0,1,0,0,1,0,0,0,0,1]); 
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Chord Label Array

In [ ]: KBLabels = [KBChord_CM, KBChord_CsM, KBChord_DM, KBChord_DsM, KBChord_EM, KBChord_FM, KBChord_FsM, KBChord_GM, KB
Chord_GsM, KBChord_AM, KBChord_AsM, KBChord_BM, KBChord_Cm, KBChord_Csm, KBChord_Dm, KBChord_Dsm, KBChord_Em, KBC
hord_Fm, KBChord_Fsm, KBChord_Gm, KBChord_Gsm, KBChord_Am, KBChord_Asm, KBChord_Bm, KBChord_C7, KBChord_Cs7, KBCh
ord_D7, KBChord_Ds7, KBChord_E7, KBChord_F7, KBChord_Fs7, KBChord_G7, KBChord_Gs7, KBChord_A7, KBChord_As7, KBCho
rd_B7]; 

In [ ]: xKBLabels = [xKBChord_CM, xKBChord_CsM, xKBChord_DM, xKBChord_DsM, xKBChord_EM, xKBChord_FM, xKBChord_FsM, xKBCho
rd_GM, xKBChord_GsM, xKBChord_AM, xKBChord_AsM, xKBChord_BM, xKBChord_Cm, xKBChord_Csm, xKBChord_Dm, xKBChord_Dsm
, xKBChord_Em, xKBChord_Fm, xKBChord_Fsm, xKBChord_Gm, xKBChord_Gsm, xKBChord_Am, xKBChord_Asm, xKBChord_Bm, KBCh
ord_C7, KBChord_Cs7, KBChord_D7, KBChord_Ds7, KBChord_E7, KBChord_F7, KBChord_Fs7, KBChord_G7, KBChord_Gs7, KBCho
rd_A7, KBChord_As7, KBChord_B7]; 

Parameters

In [ ]: rho = 0.99; # Constant for calculating loudness 
lambda = 5; # Constant for calculating substitution probability 
chordsize = 5; # maximum number of notes to consider for labeling chord 
minchordsize = 3; # if the chord has fewer notes than this, we'll consider it to be repeating the preceding chord
again 

metaoctave = 5; # tells the chordlist what octave to read the 60 defined chords in 
threshold = 1.2; # Maximum chord distance cutoff 
w_pspr1 = 1; # Weight factor for PSPR1 in scoring melody phrase segmentation 
w_pspr2 = 1; # Weight factor for PSPR2 in scoring melody phrase segmentation 
w_pspr3 = 1; # Weight factor for PSPR3 in scoring melody phrase segmentation 

Functions

Preprocessing

In [ ]: function getNoteName(y) 
   x = mod(y,12)+1; 
   ret = ""; 
   if x == 1 
       ret = "C=" 
   elseif x == 2 
       ret = "C#" 
   elseif x == 3 
       ret = "D=" 
   elseif x == 4 
       ret = "D#" 
   elseif x == 5 
       ret = "E=" 
   elseif x == 6 
       ret = "F=" 
   elseif x == 7 
       ret = "F#" 
   elseif x == 8 
       ret = "G=" 
   elseif x == 9 
       ret = "G#" 
   elseif x == 10 
       ret = "A=" 
   elseif x == 11 
       ret = "A#" 
   elseif x == 12 
       ret = "B=" 
   else 
       ret = "ERROR" 
   end 

end 
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In [ ]: function getVectorNote(letter) 
   ret = zeros(12); 
   if letter == "C=" 
       ret = [1,0,0,0,0,0,0,0,0,0,0,0] 
   elseif letter == "C#" 
       ret = [0,1,0,0,0,0,0,0,0,0,0,0] 
   elseif letter == "D=" 
       ret = [0,0,1,0,0,0,0,0,0,0,0,0] 
   elseif letter == "D#" 
       ret = [0,0,0,1,0,0,0,0,0,0,0,0] 
   elseif letter == "E=" 
       ret = [0,0,0,0,1,0,0,0,0,0,0,0] 
   elseif letter == "F=" 
       ret = [0,0,0,0,0,1,0,0,0,0,0,0] 
   elseif letter == "F#" 
       ret = [0,0,0,0,0,0,1,0,0,0,0,0] 
   elseif letter == "G=" 
       ret = [0,0,0,0,0,0,0,1,0,0,0,0] 
   elseif letter == "G#" 
       ret = [0,0,0,0,0,0,0,0,1,0,0,0] 
   elseif letter == "A=" 
       ret = [0,0,0,0,0,0,0,0,0,1,0,0] 
   elseif letter == "A#" 
       ret = [0,0,0,0,0,0,0,0,0,0,1,0] 
   elseif letter == "B=" 
       ret = [0,0,0,0,0,0,0,0,0,0,0,1] 
   end 
   return ret; 

end 

In [ ]: function keyDistance(key1::Array, key2::Array) 
   sum = 0; 
   distance = 0; 
    
   for i in 1:12 
       sum += (key1[i] - key2[i])^2; 
   end 
    
   distance = sqrt(sum); 
    
   return distance; 

end 

In [ ]: function getFirstMeasure(notes::Array{MIDI.Note}) 
   subnotes = filter(x->x.position < 96*4, notes); 
   return subnotes; 

end 

In [ ]: function makePieceVector(notes::Array{MIDI.Note}) 
   piecevector = zeros(12); 
   l = length(notes); 
    
   for i in 1:l 
       rawnote = notes[i]; 
       note = getVectorNote(getNoteName(rawnote.value)); 
       piecevector += (1/l)*note; 
   end 
    
   return piecevector; 

end 
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In [ ]: function determineKey(piecevector::Array, magicnumber::Int) 
   mindist = 1000; 
   key = "Z#Mojnr"; 
   index = 0; 
    
   for i in 1:12 
       candidate = KBMode_Major.keys[i]; 
       distance = keyDistance(piecevector, candidate.dist); 
       if magicnumber == i 
           distance -= .2; 
       end 
       if distance < mindist 
           mindist = distance; 
           key = string(candidate.keyname, "Major"); 
           index = i; 
       end 
   end 
    
   for i in 1:12 
       candidate = KBMode_Minor.keys[i]; 
       distance = keyDistance(piecevector, candidate.dist); 
       if magicnumber == i+12 
           distance -= .2; 
       end 
       if distance < mindist 
           mindist = distance; 
           key = string(candidate.keyname, "Minor"); 
           index = i+12; 
       end 
   end 
    
   return [key,index]; 

end 

In [ ]: function analyzeKey(notes::Array{MIDI.Note}) 
   piecevector = makePieceVector(notes); 
   m1vector = makePieceVector(getFirstMeasure(notes)); 
    
   magicnumber = determineKey(m1vector, 0)[2]; 
    
   key = determineKey(piecevector, magicnumber)[1]; 
    
   return key; 

end 
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In [ ]:

In [ ]: function transposePiece(notes::Array{MIDI.Note},track1::Array{MIDI.Note},track2::Array{MIDI.Note}) 
    
   keyname = analyzeKey(notes); 
   offset = calculateOffset(keyname); 
   retnotes = Array{MIDI.Note}(length(notes)); 
   rett1 = Array{MIDI.Note}(length(track1)); 
   rett2 = Array{MIDI.Note}(length(track2)); 
    
   for i in 1:length(notes) 
       note = notes[i]; 
       newval = note.value + offset; 
       note.value = newval; 
       retnotes[i] = note; 
   end 
    
   for i in 1:length(track1) 
       note = track1[i]; 
       newval = note.value + offset; 
       note.value = newval; 
       rett1[i] = note; 
   end 
    
   for i in 1:length(track2) 
       note = track2[i]; 
       newval = note.value + offset; 
       note.value = newval; 
       rett2[i] = note; 
   end 
    
   return (retnotes,rett1,rett2); 

end 

function calculateOffset(keyname::String) 
   letter = ""; 
   offset = 0; 

   letter = keyname[1:2]; 

   if letter == "C=" 
       offset = 0; 
   elseif letter == "C#" 
       offset = -1; 
   elseif letter == "D=" 
       offset = -2; 
   elseif letter == "D#" 
       offset = -3; 
   elseif letter == "E=" 
       offset = -4; 
   elseif letter == "F=" 
       offset = -5; 
   elseif letter == "F#" 
       offset = -6; 
   elseif letter == "G=" 
       offset = 5; 
   elseif letter == "G#" 
       offset = 4; 
   elseif letter == "A=" 
       offset = 3; 
   elseif letter == "A#" 
       offset = 2; 
   elseif letter == "B=" 
       offset = 1; 
   end 
    
   return offset; 

end 
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In [ ]: function processSong(filename::String) 
   MIDIfile = readMIDIfile(filename); 
   MIDIfile.tpq = 96; 
   notes = getnotes(MIDIfile.tracks[2]).notes; 
   if length(MIDIfile.tracks) > 2 
       for i in 3:length(MIDIfile.tracks) 
           append!(notes, getnotes(MIDIfile.tracks[i]).notes) 
       end 
   end 
    
   track1 = getnotes(MIDIfile.tracks[2]).notes; 
   track2 = getnotes(MIDIfile.tracks[3]).notes; 
    
   notes = transposePiece(notes,track1,track2); 
   key = analyzeKey(notes[1]); 
   mode = key[3:7]; 
    
   outfile = MIDI.MIDIFile(); 
   track1 = MIDI.MIDITrack(); 
   track2 = MIDI.MIDITrack(); 
   MIDI.addnotes!(track1,notes[2]); 
   MIDI.addnotes!(track2,notes[3]); 
   push!(outfile.tracks, track1); 
   push!(outfile.tracks, track2); 
   outname = mode*"_"*filename[1:length(filename)-4]; 
   MIDI.writeMIDIfile(outname, outfile); 

end 

In [ ]: function processAll(filenames::Array{String}) 
   len = length(filenames); 
   for i in 1:len 
       processSong(filenames[i]); 
   end 

end 

Chords

In [ ]: function chordDistance(chord1::inputChord, chord2::inputChord) 
   v1 = chord1.vector; 
   v2 = chord2.vector; 
    
   intermediateSum = 0; 
    
   for i in 1:12 
       intermediateSum += (v1[i] - v2[i])^2 
   end 
    
   distance = sqrt(intermediateSum) 
    
   return distance 

end 

In [ ]: function labelChord(vchord::Array) 
   label = ""; 
   mindist = 10000; 
    
   for i in 1:length(KBLabels) 
       delta = chordDistance(inputChord("",vchord,""), inputChord("",KBLabels[i].rep,"")); 
       if delta < mindist 
           mindist = delta; 
           label = KBLabels[i].rawname; 
       end 
   end 
    
   return label; 

end 
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In [ ]: function calculateLoudness(chord::Array{MIDI.Note}) 
   loudness = zeros(length(chord)); 
   for i in 1:length(chord) 
       n = chord[i]; 
       loudness[i] = rho^(div(n.value,12) + mod(n.value,12)+1); 
   end 
   return loudness; 

end 

In [ ]: function vectorizeChord(chord::Array{MIDI.Note}) 
   returnVector = zeros(12); 
   loudnessVector = calculateLoudness(chord); 
   for i in 1:12 
       for j in 1:length(chord) 
           n = chord[j]; 
           if mod(n.value,12)+1 == i 
               returnVector[i] += loudnessVector[j]; 
           end 
       end 
   end 
   return returnVector; 

end 

In [ ]: function calculateReductionWeight(chord::Array{MIDI.Note}) 
   weights = zeros(length(chord)); 
    
   label = labelChord(vectorizeChord(chord)); 
    
   for i in 1:length(chord) 
       n = chord[i]; 
       dur = div(n.duration,96); 
       weights[i] = (rho^(div(n.value,12) + mod(n.value,12)+1))*dur; 
   end 
   return weights; 

end 

In [ ]: function reduceChord(chord::Array{MIDI.Note}, label::String) 
    
   labelchord = filter(x -> x.rawname == label, KBLabels)[1]; 
   newchord = filter(x -> labelchord.rep[mod(x.value,12)+1] == 1, chord); 
   returnchord = Array{MIDI.Note}; 
   quit = 0; 
   i = 1; 
    
   while quit == 0 
       if length(newchord) >= minchordsize 
           returnchord = newchord; 
           quit = 1; 
       else    
           if labelchord.rep[i] == 1 
               if !(in(MIDI.Note(60+i-1,96,0,0), newchord)) 
                   push!(newchord, MIDI.Note(60+i-1,96,0,0)); 
               end 
           end  
       end 
        
       i = i+1; 
        
       if i > 12 
           i = i-12; 
       end 
   end 

   return returnchord; 
end 
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In [ ]:

In [ ]: function getChordNames(chordlist::inputChordList) 
   namelist = []; 
   for i in 1:length(chordlist.chords) 
       push!(namelist,(chordlist.chords[i]).name); 
   end 
   return namelist; 

end 

In [ ]: function makeChordName(chord::Array{MIDI.Note}) 
   notes = Array{String}(0); 
   name = ""; 
    
   if length(chord) > 0 
    
       for i in 1:length(chord) 
           n = chord[i]; 
           letter = getNoteName(n.value); 
           octave = dec(div(n.value,12)); 
           notename = letter * octave; 
           if length(notes) == 0 
              push!(notes,notename); 
           elseif !(notename in notes) 
              push!(notes,notename); 
           end 
       end 
    
       sort!(notes,by=last); 

       for i in 1:length(notes) 
           name = name * notes[i]; 
       end 
        
   end 
    
   return name 

end 

In [ ]: function kbChordToInputChord(kbchord::KBChord, octave::Int) 
   vector = kbchord.rep; 
   label = kbchord.rawname; 
   chord = Array{MIDI.Note}(0); 
    
   for i in 1:12 
       if vector[i] == 1 
           value = octave*12 + (i-1); 
           note = MIDI.Note(value, 96, 0, 0); 
           push!(chord,note); 
       end 
   end 
    
   name = makeChordName(chord); 
   v = vectorizeChord(chord); 
    
   returnchord = inputChord(name,v,label); 
    
   return returnchord; 

end 

function chordCombine(entry::inputChord, index, chordlist::inputChordList) 
   oldChord = chordlist.chords[index]; 
   oldVector = oldChord.vector; 
   newVector = entry.vector; 
    
   newChord = inputChord(oldChord.name, zeros(12), oldChord.label) 
    
   for i in 1:12 
       newChord.vector[i] = (oldVector[i] + newVector[i])/2 
   end 
    
   return newChord; 

end 
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In [ ]: function readChord(chord::Array{MIDI.Note}, chordlist::inputChordList, progression::inputChordProgression, startT
ime::Int, endTime::Int) 

   v = vectorizeChord(chord); 
   label = labelChord(v); 
    
   rchord = reduceChord(chord, label); 
    
   if length(rchord) >= minchordsize 
        
       name = makeChordName(rchord); 
    
       entry = inputChord(name,v,label); 
        
   else   
        
       entry = chordlist.chords[length(chordlist.chords)]; 
        
       name = entry.name; 
        
   end 
    
   push!(progression.chords.chords, entry); 
   push!(progression.startTimes, startTime); 
   push!(progression.endTimes, endTime); 
    
   if length(chordlist.chords) == 0 
       push!(chordlist.chords,entry) 
   else 
       namelist = getChordNames(chordlist); 

       index = findfirst(namelist.==name); 

       if index == 0 
           push!(chordlist.chords,entry) 
       else 
           chordlist.chords[index] = chordCombine(entry,index,chordlist); 
       end 
   end 

end 

In [ ]: function findLastPosition(notes::Array) 
   positionList = [] 
   for i in 1:length(notes) 
       push!(positionList,notes[i].position) 
   end 
    
   return maximum(positionList); 

end 

In [ ]: function addKBChords(chordlist::inputChordList) 
   for i in 1:length(KBLabels) 
       newchord = kbChordToInputChord(KBLabels[i], metaoctave); 
       push!(chordlist.chords, newchord); 
   end 
    
   return chordlist; 

end 
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In [ ]:

In [ ]: function calculateChordDistances(chordlist::inputChordList) 
   distancelist = chordDistanceList([]); 
    
   for i in 1:length(chordlist.chords) 
       chord = chordlist.chords[i]; 
       distances = chordDistances(chord,[]); 
       dlist = []; 
        
       for j in 1:length(chordlist.chords) 
           dist = chordDist(chordlist.chords[j], chordDistance(chord, chordlist.chords[j])); 
           push!(dlist,dist); 
       end 
        
       distances.distances = dlist; 
       push!(distancelist.list, distances); 
   end 
    
   return distancelist; 

end 

In [ ]: function calculateTheta(chord1::inputChord, chord2::inputChord) 
   delta = chordDistance(chord1, chord2); 
   theta = exp(-1*lambda*delta); 
   return theta; 

end 

In [ ]: function thetaSum(chord::inputChord, chordlist::inputChordList) 
   sum = 0; 
   for i in 1:length(chordlist.chords) 
       sum += calculateTheta(chord, chordlist.chords[i]); 
   end 
   return sum; 

end 

In [ ]: function probSubstitution(chord1::inputChord, chord2::inputChord, chordlist::inputChordList) 
   delta = chordDistance(chord1, chord2); 
   if delta < threshold 
       theta = calculateTheta(chord1, chord2); 
       sum = thetaSum(chord1, chordlist); 
       prob = theta/sum; 
       return prob; 
   else 
       return -1; 
   end 

end 

function processChords(notes::Vector{Note}, division::Int) 
   chordlist = inputChordList([]); 
   progression = inputChordProgression(inputChordList([]), [], []); 
   lastPosition = findLastPosition(notes); 
   i = 0; 
    
   while i <= lastPosition 
       chord = filter(x->x.position >= i && x.position < i + division, notes); 
       readChord(chord, chordlist, progression, i, i+division); 
       i += division; 
   end 
    
   chordlist = addKBChords(chordlist); 
    
   retarray=[chordlist, progression]; 
    
   return retarray; 

end 
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In [ ]:

In [ ]: function generateChordSubProbList(chordlist::inputChordList) 
   l = length(chordlist.chords); 
   CSPL = chordSubProbList(Array{chordSubProbs}(l), chordlist); 
   for i in 1:l 
       entry = chordSubProbs(chordlist.chords[i], chordSubProbVector(chordlist.chords[i], chordlist)); 
       CSPL.probabilities[i] = entry; 
   end 
   return CSPL; 

end 

In [ ]: function cpkbFreqToProb(cpkb::Array) 
   length1 = length(cpkb); 
    
   for i in 1:length1 
       dist = cpkb[i].dist; 
        
       length2 = length(dist); 
       freqsum = 0; 
        
       for j in 1:length2 
           freqsum += dist[j][2]; 
       end 
        
       for j in 1:length2 
           dist[j][2] = (dist[j][2])/freqsum; 
       end 
        
   end 
    
   return cpkb 

end 

In [ ]: function arraykbFreqToProb(cpkb::Array) 
   length1 = length(cpkb); 
    
   for i in 1:length1 
       dist = cpkb[i][2]; 
        
       length2 = length(dist); 
       freqsum = 0; 
        
       for j in 1:length2 
           freqsum += dist[j][2]; 
       end 

       for j in 1:length2 
           dist[j][2] = (dist[j][2])/freqsum; 
       end 
        
   end 
    
   return cpkb 

end 

function chordSubProbVector(chord::inputChord, chordlist::inputChordList) 
   l = length(chordlist.chords); 
   v = zeros(l); 
   j = 0; 
   for i in 1:l 
       v[i-j] = probSubstitution(chord, chordlist.chords[i], chordlist); 
       if v[i-j] < 0 
           deleteat!(v,i-j); 
           j = j + 1; 
       end 
   end 
   return v; 

end 
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In [ ]:

Accompaniment Rhythm

function learnCP(cps::Array) 
   cpkb = []; 
   length1 = length(cps); 
    
   for i in 1:length1 
       cp = cps[i].chords.chords; 
       length2 = length(cp); 
        
       for j in 1:length2 
            
           thischord = cp[j].name; 
            
           localmetric = mod(j,4); 
           if localmetric == 0 
               localmetric = 4; 
           end 
            
           if (length2-j) < 4 
               last = 1; 
           else 
               last = 0; 
           end 
            
           if j == 1 
               chordprior = ["Start"]; 
               cpstring = chordprior[1]; 
           elseif j == 2 
               chordprior = [cp[1].name]; 
               cpstring = chordprior[1] 
           else 
               chordprior = String[]; 
               push!(chordprior, cp[j-2].name); 
               push!(chordprior, cp[j-1].name); 
               cpstring = chordprior[1]*"_"*chordprior[2]; 
           end 
            
           uniqueID = cpstring*"_"*string(localmetric)*"_"*string(last); 
            
           index = findfirst(x -> x.uniqueID == uniqueID, cpkb); 
            
           if index == 0 
               dist = [[thischord, 1]]; 
               entry = cpkbEntry(chordprior, localmetric, last, uniqueID, dist); 
               push!(cpkb,entry); 
           else 
               index2 = findfirst(x -> x[1] == thischord, cpkb[index].dist) 
                
               if index2 == 0 
                   push!(cpkb[index].dist, [thischord, 1]); 
               else 
                   cpkb[index].dist[index2][2] += 1; 
               end 
                
           end 
            
       end 
        
   end 
    
   cpkb = cpkbFreqToProb(cpkb); 
    
   return cpkb; 

end 
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In [ ]: function buildRhythmForm(chord::Vector{Note}, metricunit::Int, division::Int) 
   rhythmform = [0,0,0,0,0,0,0,0]; 
    
   for i in 1:length(chord) 
       note = chord[i]; 
       pos = trunc(Int,(mod(note.position, division))/metricunit + 1); 
       rhythmform[pos] = 1; 
   end 
    
   indices = []; 
    
   for i in 1:8 
       if rhythmform[i] == 1 
           push!(indices,i); 
       end 
   end 
    
   push!(indices,9); 
    
   if length(indices) > 1 
       for i in 1:(length(indices) - 1) 
           a = indices[i]; 
           diff = indices[i+1] - indices[i]; 
           rhythmform[a] = diff; 
       end 
   end 
    
   return rhythmform; 

end 

In [ ]: function learnRhythmForms(notes::Vector{Note}, division::Int) 
   rhythmforms = []; 
   metricunit = 48; 
   lastPosition = findLastPosition(notes); 
   i = 0; 
    
   while i <= lastPosition 
       chord = filter(x->x.position >= i && x.position < i + division, notes); 
       rhythmform = buildRhythmForm(chord,metricunit,division); 
       push!(rhythmforms,rhythmform); 
       i += division; 
   end 
    
   return rhythmforms; 

end 

In [ ]: function rhythmFormToString(rhythmform::Array) 
   retstring = ""; 
    
   for i in 1:8 
       retstring = retstring*string(rhythmform[i]); 
   end 
    
   return retstring; 

end 
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In [ ]:

Learning and Generation

Assumption: preprocessing gives us files transposed to C, with a time division of 96 ticks, with all melody notes in track 1 and all accompaniment notes in
track 2.

function learnRhythmCP(rhythmform_proglist::Array) 
   rpkb = []; 
   length1 = length(rhythmform_proglist); 
    
   for i in 1:length1 
       rp = rhythmform_proglist[i]; 
       length2 = length(rp); 
        
       for j in 1:length2 
            
           rhythmform = rp[j]; 
            
           localmetric = mod(j,4); 
           if localmetric == 0 
               localmetric = 4; 
           end 
            
           if (length2-j) < 4 
               last = 1; 
           else 
               last = 0; 
           end 
            
           if j == 1 
               rhythmform_prior = ["Start"]; 
               rpstring = rhythmform_prior[1]; 
           else 
               rhythmform_prior = rp[j-1]; 
               rpstring = rhythmFormToString(rhythmform_prior); 
           end 
            
           uniqueID = rpstring*"_"*string(localmetric)*"_"*string(last); 
            
           index = findfirst(x -> x.uniqueID == uniqueID, rpkb); 
            
           if index == 0 
               dist = [[rhythmform, 1]]; 
               entry = cpkbEntry(rhythmform_prior, localmetric, last, uniqueID, dist); 
               push!(rpkb,entry); 
           else 
               index2 = findfirst(x -> x[1] == rhythmform, rpkb[index].dist) 
                
               if index2 == 0 
                   push!(rpkb[index].dist, [rhythmform, 1]); 
               else 
                   rpkb[index].dist[index2][2] += 1; 
               end 
                
           end 
            
       end 
        
   end 
    
   rpkb = cpkbFreqToProb(rpkb); 
    
   return rpkb; 

end 
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In [ ]: function readAllChords(filenames::Array{String}) 
   l = length(filenames); 
   chordlist = []; 
   proglist_m = []; 
   proglist_M = []; 
   melody_proglist_m = []; 
   melody_proglist_M = []; 
   rhythmform_proglist = []; 
    
   for i in 1:l 
       filename = filenames[i]; 
       MIDIfile = readMIDIfile(filename); 
       melody = getnotes(MIDIfile.tracks[1]).notes; 
       notes = getnotes(MIDIfile.tracks[1]).notes; 
       append!(notes,getnotes(MIDIfile.tracks[2]).notes); 
       chord_division = 96*4; 
       mode = filename[1:5]; 
        
       results = processChords(notes, chord_division); 
       chords = results[1].chords; 
       prog = results[2]; 
        
       plength = max(melody[length(melody)].position + melody[length(melody)].duration, 
                     notes[length(notes)].position + notes[length(notes)].duration); 
        
       plength = trunc(Int, plength); 
        
       melody_prog = makeMelodyPhraseProgression(melody, plength); 
        
       rhythmform_prog = learnRhythmForms(notes, chord_division); 
       push!(rhythmform_proglist, rhythmform_prog); 
        
       for j in 1:length(chords) 
           if chords[j] in chordlist 
               ; 
           else 
               push!(chordlist,chords[j]); 
           end 
       end 
        
       if mode == "Major" 
           push!(proglist_M, prog); 
           push!(melody_proglist_M, melody_prog); 
       elseif mode == "Minor" 
           push!(proglist_m, prog); 
           push!(melody_proglist_m, melody_prog); 
       else 
           print("YOU HECKED UP, SOME FILE ISN'T PREPROCESSED\n"); 
       end 
   end 
    
   cpkb_M = learnCP(proglist_M); 
   cpkb_m = learnCP(proglist_m); 
   substitution_probs = generateChordSubProbList(inputChordList(chordlist)); 
   rhythm_probs = learnRhythmCP(rhythmform_proglist); 
   melody_cpkb_M = learnPhraseCPs(melody_proglist_M, proglist_M); 
   melody_cpkb_m = learnPhraseCPs(melody_proglist_m, proglist_m); 
    
   retarray = [cpkb_M, cpkb_m, substitution_probs, rhythm_probs, melody_cpkb_M, melody_cpkb_m]; 
    
   return retarray; 

end 
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In [ ]: function markovNextChord(cpkb::Array, prior::Array, localmetric::Int, last::Int) 
   index = findfirst(x -> (x.chordprior == prior && x.localmetric == localmetric && x.last == last), cpkb) 
    
   if index == 0 
       index = findfirst(x -> (x.chordprior == prior && x.localmetric == localmetric), cpkb); 
   end 
    
   if index == 0 
       index = findfirst(x -> (x.chordprior == prior), cpkb); 
   end 
    
   if index == 0 
       index = findfirst(x -> (x.localmetric == localmetric), cpkb); 
   end 
    
   entry = cpkb[index]; 
   dist = entry.dist; 
    
   n = rand(); 
   runningsum = 0; 
   next = ""; 
    
   for i in 1:length(dist) 
       runningsum += dist[i][2]; 
       if n < runningsum 
           next = dist[i][1]; 
           break; 
       end 
   end 
    
   return(next); 

end 

Assumption: plength is greater than or equal to 8

In [ ]: function markovSelectChords(cpkb::Array, plength::Int) 
   prog = Array{String}(plength); 
   last = 0; 
    
   prog[1] = markovNextChord(cpkb, ["Start"], 1, last); 
   prog[2] = markovNextChord(cpkb, [prog[1]], 2, last); 
    
   for i in 3:plength 
        
       if (plength - i) < 4 
           last = 1; 
       end 
        
       localmetric = mod(i,4); 
       if localmetric == 0 
           localmetric = 4; 
       end 
        
       priors = [prog[i-2], prog[i-1]]; 
        
       prog[i] = markovNextChord(cpkb, priors, localmetric, last); 
        
   end 
    
   return prog; 

end 
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In [ ]:

In [ ]: function pickSubChord(dist::Array) 
   n = rand(); 
   runningsum = 0; 
   index = 1; 
    
   for i in 1:length(dist) 
       runningsum += dist[i]; 
       if n < runningsum 
           index = i; 
           break; 
       end 
   end 
    
   return index; 

end 

In [ ]: function substituteChords(prog::Array, subprobs::chordSubProbList) 
   outprog = Array{String}(length(prog)); 
   probs = subprobs.probabilities; 
    
   chord = ""; 
    
   for i in 1:length(prog) 
       name = prog[i]; 
       index = findfirst(x -> x.chord.name == name, probs); 
       if index == 0 
           index = 1; 
       end 
       entry = probs[index]; 
       dist = entry.probabilities; 
        
       index = pickSubChord(dist); 
       chord = probs[index].chord.name; 
       outprog[i] = chord; 
   end 
    
   return outprog; 

end 

function markovSelectRhythms(rpkb::Array, plength::Int) 
   prog = Array{Array}(plength); 
   last = 0; 
    
   prog[1] = markovNextChord(rpkb, ["Start"], 1, last); 
   prog[2] = markovNextChord(rpkb, [prog[1]], 2, last); 
    
   for i in 3:plength 
        
       if (plength - i) < 4 
           last = 1; 
       end 
        
       localmetric = mod(i,4); 
       if localmetric == 0 
           localmetric = 4; 
       end 
        
       priors = [prog[i-2], prog[i-1]]; 
        
       prog[i] = markovNextChord(rpkb, priors, localmetric, last); 
        
   end 
    
   return prog; 

end 



77

In [ ]: function generateProgression(cpkb_M::Array, cpkb_m::Array, substitution_probs::chordSubProbList, mode::String, pl
ength::Int) 
    
   if mode == "Major" 
       cpkb = cpkb_M; 
   elseif mode == "Minor" 
       cpkb = cpkb_m; 
   else 
       print("Error! Bad mode argument!\n"); 
   end 
    
   prog = markovSelectChords(cpkb, plength); 
   prog = substituteChords(prog, substitution_probs); 
    
   return prog; 

end 

In [ ]: function generateRhythmProg(rpkb::Array, plength::Int) 
   rhythm_prog = markovSelectRhythms(rpkb, plength); 
    
   return rhythm_prog; 

end 

In [ ]: function getNoteValue(name::String) 
   value = 2000; 
    
   if name == "C=" 
       value = 0; 
   elseif name == "C#" 
       value = 1; 
   elseif name == "D=" 
       value = 2; 
   elseif name == "D#" 
       value = 3; 
   elseif name == "E=" 
       value = 4; 
   elseif name == "F=" 
       value = 5; 
   elseif name == "F#" 
       value = 6; 
   elseif name == "G=" 
       value = 7; 
   elseif name == "G#" 
       value = 8; 
   elseif name == "A=" 
       value = 9; 
   elseif name == "A#" 
       value = 10; 
   elseif name == "B=" 
       value = 11; 
   else 
       print("Error in getNoteValue\n"); 
   end 
    
   return value; 

end 
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In [ ]:

In [ ]: function chordNameToNotes(name::String, rhythmform::Array, offset::Int, ordinality::Int) 
   l = length(name)/3; 
   divlength = 96*2; 
    
   notelist = []; 
   returnnotes = []; 
    
   for i in 1:l 
       index = Int(3*(i-1) + 1); 
       notename = name[index:(index+2)]; 
        
       note = getNoteValue(notename[1:2]); 
       oct = parse(Int, notename[3]); 
        
       note = (note + oct*12) + offset; 
        
       push!(notelist,note) 
        
   end 
    
   returnnotes = generateWithRhythm(notelist, rhythmform, ordinality); 
    
   return returnnotes; 

end 

function generateWithRhythm(notelist::Array, rhythmform::Array, ordinality::Int) 
   returnnotes = []; 
    
   for i in 1:8 
       n = rand(); 
       if rhythmform[i] != 0 
           dur = (96*rhythmform[i])/2 
           pos = (ordinality-1)*96*4 + (96*i)/2 
           if mod(i,8) == 1 
               push!(returnnotes, MIDI.Note(notelist[1], dur, pos, 0)) 
               if n > 0.5 
                   push!(returnnotes, MIDI.Note(notelist[2], dur, pos, 0)) 
               end 
           elseif mod(i,4) == 1 
               push!(returnnotes, MIDI.Note(notelist[1], dur, pos, 0)) 
               push!(returnnotes, MIDI.Note(notelist[2], dur, pos, 0)) 
               if (n > 0.5 && length(notelist) > 2) 
                   push!(returnnotes, MIDI.Note(notelist[3], dur, pos, 0)) 
               end 
           elseif mod(i,2) == 1 
               for j in 3:length(notelist) 
                   push!(returnnotes, MIDI.Note(notelist[j], dur, pos, 0)) 
               end 
           else 
               if n < 0.33 
                   push!(returnnotes, MIDI.Note(notelist[1], dur, pos, 0)) 
               elseif n < 0.66 
                   push!(returnnotes, MIDI.Note(notelist[2], dur, pos, 0)) 
               else 
                   push!(returnnotes, MIDI.Note(notelist[length(notelist)], dur, pos, 0)) 
               end 
           end 
       end 
   end 
    
   return returnnotes; 

end 
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In [ ]: function makeChordLabel(name::String) 
   l = trunc(Int,length(name)/3); 
    
   notelist = Array{MIDI.Note}(l); 
    
   for i in 1:l 
       index = Int(3*(i-1) + 1); 
       notename = name[index:(index+2)]; 
        
       note = getNoteValue(notename[1:2]); 
       oct = parse(Int, notename[3]); 
        
       note = MIDI.Note((note + oct*12) + offset,96,0,0); 
        
       #push!(notelist, note) ;   
       notelist[i] = note; 
   end 
    
   label = labelChord(vectorizeChord(notelist)); 
    
   return(label); 

end 

In [ ]: function outputProgression(prog::Array, rhythms::Array, melody::Array, offset::Int, outname::String) 
    
   outfile = MIDI.MIDIFile(); 
   track1 = MIDI.MIDITrack(); 
   notes1 = MIDI.Note[]; 
   notes2 = MIDI.Note[]; 
    
   l = length(prog); 
    
   for i in 1:length(melody) 
       note = melody[i]; 
       note.value = note.value + offset; 
       push!(notes1, note); 
   end 
    
   for i in 1:l 
       chordnotes = chordNameToNotes(prog[i], rhythms[i], offset, i); 
       for j in 1:length(chordnotes) 
           push!(notes2,chordnotes[j]); 
       end 
   end 
    
   last = notes2[length(notes2)].position + notes2[length(notes2)].duration; 
   buffernote = MIDI.Note(0, 96*2, last, 0, 0); 
   push!(notes2,buffernote); 
    
   MIDI.addnotes!(track1, notes1); 
   MIDI.addnotes!(track1, notes2); 
   push!(outfile.tracks, track1); 
   MIDI.writeMIDIfile(outname, outfile); 
   print(outname*" written and ready to be listened to!\n"); 
    

end 

Melody

In [ ]: function IOI(note1::Note, note2::Note) 
   return (note2.position - note1.position); 

end 

In [ ]: function OOI(note1::Note, note2::Note) 
   return (note2.position - (note1.position + note1.duration)); 

end 
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In [ ]: function getmeanIOI(notes::Vector{Note}) 
   IOIs = []; 
    
   for i in 1:(length(notes)-1) 
       push!(IOIs, IOI(notes[i+1],notes[i])); 
   end 
    
   meanIOI = mean(IOIs); 
    
   return trunc(Int,meanIOI); 

end 

In [ ]: function getPSPR1(note1::Note, note2::Note, meanIOI::Int) 
   return w_pspr1*((IOI(note2,note1) + OOI(note2,note1))/meanIOI); 

end 

In [ ]: function getPSPR2(n::Int) 
   return w_pspr2*(-abs(log2(n) - 3)); 

end 

In [ ]: function getPSPR3(note::Note) 
   return w_pspr3*(-log2((mod(note.position,96*4)*16/(96*4))+0.99)); 

end 

In [ ]: function getPSPRscore(phrase1::Vector{Note}, phrase2::Vector{Note}, meanIOI::Int) 
   PSPR1 = getPSPR1(phrase1[length(phrase1)], phrase2[1], meanIOI); 
   PSPR2 = getPSPR2(phrase2); 
   PSPR3 = getPSPR3(phrase2[1]); 
    
   return PSPR1 + PSPR2 + PSPR3; 

end 

In [ ]: function makePSPR1vector(notes::Vector{Note}) 
   PSPR1vector = []; 
   meanIOI = getmeanIOI(notes); 
    
   for i in 1:(length(notes)-1) 
       note1 = notes[i]; 
       note2 = notes[i+1]; 
       push!(PSPR1vector, getPSPR1(note1, note2, meanIOI)); 
   end 
    
   return PSPR1vector; 

end 

In [ ]: function makePSPR3vector(notes::Vector{Note}) 
   PSPR3vector = []; 
    
   push!(PSPR3vector,0); 
    
   for i in 1:(length(notes)-1) 
       note = notes[i+1]; 
       push!(PSPR3vector, getPSPR3(note)); 
   end 
    
   return PSPR3vector; 

end 
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In [ ]:

In [ ]: function addSilentFinalNote(notes::Vector{Note}) 
   lastnote = notes[length(notes)]; 
   newpos = lastnote.position + lastnote.duration; 
    
   diff = 96*4 - mod(newpos, 96*4); 
   newpos = newpos + diff; 
    
   newnote = MIDI.Note(0,0,newpos,0,0); 
   push!(notes,newnote); 
   return notes; 

end 

In [ ]: function makeMelodyPhrases(notes::Vector{Note}) 
   melodyPhrases = []; 
    
   notes = addSilentFinalNote(notes); 
    
   PSPR1vector = makePSPR1vector(notes);  
   PSPR3vector = makePSPR3vector(notes); 
    
   PSPR1_3vector = []; 
    
   for i in 1:length(PSPR1vector) 
       push!(PSPR1_3vector, PSPR1vector[i] + PSPR3vector[i]); 
   end 
    
   MPdivisions = findMPdivisions(PSPR1_3vector); 
    
   for i in 1:(length(MPdivisions)-1) 
       index1 = MPdivisions[i] + 1; 
       index2 = MPdivisions[i+1]; 
       push!(melodyPhrases, getindex(notes,index1:index2)); 
   end 
    
   return melodyPhrases; 

end 

function findMPdivisions(scores::Array) 
   MPdivisions = []; 
   remainingScores = scores; 
    
   quit = 0; 
   index = 0; 
    
   push!(MPdivisions,0); 
    
   while quit == 0 
       iteratedScores = copy(remainingScores); 
       for i in 1:length(remainingScores) 
           iteratedScores[i] = remainingScores[i] * getPSPR2(i); 
       end 
        
       m = trunc(Int,findmax(iteratedScores)[2]); 

       push!(MPdivisions,index + m); 
        
       index = index + m; 
        
       if m == length(remainingScores) 
           quit = 1; 
       else 
           remainingScores = getindex(remainingScores, (m+1):length(remainingScores)); 
       end 
   end 
    
   return(MPdivisions);     

end 
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In [ ]:

In [ ]: function makeMelodyPhraseProgression(notes::Vector{Note}, plength::Int) 
   melodyphrases = makeMelodyPhrases(notes); 
    
   phraseProgression = constructPhraseProgression(melodyphrases, plength); 
    
   return phraseProgression; 

end 

In [ ]: function makePhraseRhythmID(phrase::Array) 
   id = ""; 
   firstpos = phrase[1].position; 
    
   for i in 1:(length(phrase)) 
       note = phrase[i]; 
       dur = string(note.duration); 
       pos = string(note.position - firstpos); 
       id = id*dur*";"*pos; 
       if i < length(phrase) 
           id = id*"|"; 
       end 
   end 
    
   return(id); 

end 

function constructPhraseProgression(phrases::Array, plength::Int) 
   phraseProgression = []; 
    
   firstOOI = phrases[1][1].position; 
    
   if firstOOI > 0 
       restphrase = [MIDI.Note(0,firstOOI,0,0,0)]; 
       push!(phraseProgression, restphrase); 
   end 
    
   push!(phraseProgression, phrases[1]); 
    
   for i in 2:length(phrases) 
       note1 = phrases[i-1][length(phrases[i-1])]; 
       note2 = phrases[i][1]; 
       ooi = OOI(note1, note2); 
       if ooi > 0 
           restphrase = [MIDI.Note(0,ooi,note1.position + note1.duration,0,0)]; 
           push!(phraseProgression, restphrase); 
       end 
       push!(phraseProgression, phrases[i]); 
   end 
    
   lastnote = phrases[length(phrases)][length(phrases[length(phrases)])]; 
   lastend = lastnote.position + lastnote.duration; 
   diff = plength - lastend; 
    
   if diff > 0 
       restphrase = [MIDI.Note(0,diff,lastend,0,0)]; 
       push!(phraseProgression, restphrase); 
   end 
    
   return phraseProgression; 

end 
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In [ ]:

In [ ]: function makeValueID(value::Int, chordname::String) 
   id = string(value)*"_"*chordname; 
    
   return id; 

end 

function learnPhraseRhythmCP(phrase_proglist::Array) 
   prkb = []; 
   length1 = length(phrase_proglist); 
    
   for i in 1:length1 
       pr = phrase_proglist[i]; 
       length2 = length(pr); 
        
       for j in 1:length2 
            
           phrase = pr[j]; 
           rest = 0; 
            
           if phrase[1].velocity == 0 
               rest = 1; 
           end 
            
           if rest == 0 
               label = makePhraseRhythmID(phrase); 
               prhythm = []; 
               firstpos = phrase[1].position; 
                
               for k in 1:(length(phrase)) 
                   note = phrase[k]; 
                   prentry = [note.duration, note.position - firstpos]; 
                   push!(prhythm, prentry); 
               end 
           else 
               prhythm = ["REST"];    
           end 
            
           if j == 1 
               prior = "Start"; 
           else 
               if pr[j-1][1].velocity == 0 
                   prior = "REST"; 
               else 
                   prior = makePhraseRhythmID(pr[j-1]); 
               end 
           end 
            
           index = findfirst(x -> x[1] == prior, prkb); 
            
           if index == 0 
               dist = [[prhythm, 1]]; 
               entry = [prior,dist]; 
               push!(prkb,entry); 
           else 
               index2 = findfirst(x -> x[1] == prhythm, prkb[index][2]) 
                
               if index2 == 0 
                   push!(prkb[index][2], [prhythm, 1]); 
               else 
                   prkb[index][2][index2][2] += 1; 
               end 
                
           end 
            
       end 
        
   end 
    
   prkb = arraykbFreqToProb(prkb); 
    
   return prkb; 

end 
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In [ ]: function learnPhraseValueCP(phrase_proglist::Array, chord_proglist::Array) 
   pvkb = []; 
   length1 = length(phrase_proglist); 
    
   chordlength = 96*4; 
    
   for i in 1:length1 
       pv = phrase_proglist[i]; 
       length2 = length(pv);  
        
       prog = chord_proglist[i]; 
        
       timing = 0; 
       curchord = 0; 
       chordname = "NOPE"; 
        
       for j in 1:length2 
            
           phrase = pv[j];  
           rest = 0; 
            
           if phrase[1].velocity == 0 
               rest = 1; 
               timing = timing + phrase[1].duration; 
           end 
            
           if rest == 0 
                
               for k in 1:length(phrase)                    
                   note = phrase[k]; 
                   value = note.value; 
                    
                   curchord = min(length(prog.chords.chords), div(timing, chordlength) + 1); 
                    
                   timing = timing + note.duration; 
                    
                   chordname = prog.chords.chords[curchord].label; 
                    
                   if k == 1 
                       prior = "Start_"*chordname; 
                   else 
                       prior = makeValueID(trunc(Int,phrase[k-1].value), chordname);  
                   end 
                    
                   index = findfirst(x -> x[1] == prior, pvkb); 
                    
                   if index == 0 
                       dist = [[value, 1.0]]; 
                       entry = [prior,dist]; 
                       push!(pvkb,entry); 
                   else 
                       index2 = findfirst(x -> x[1] == value, pvkb[index][2])  
                
                       if index2 == 0 
                           push!(pvkb[index][2], [value, 1.0]); 
                       else 
                           pvkb[index][2][index2][2] += 1; 
                       end 
                   end 
               end 
                
           end  
            
       end 
        
   end 
    
   pvkb = arraykbFreqToProb(pvkb); 

   return pvkb; 
end 
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In [ ]: function learnPhraseCPs(phrase_proglist::Array, chord_proglist::Array) 
   phraseCPs = []; 
    
   push!(phraseCPs, learnPhraseRhythmCP(phrase_proglist)); 
   push!(phraseCPs, learnPhraseValueCP(phrase_proglist, chord_proglist::Array)); 
    
   return phraseCPs; 

end 

In [ ]: function generateMelody(cpkb_M::Array, cpkb_m::Array, mode::String, prog::Array) 
   if mode == "Major" 
       cpkb = cpkb_M; 
   elseif mode == "Minor" 
       cpkb = cpkb_m; 
   else 
       print("Error! Bad mode argument!\n"); 
   end 
    
   rhythmCP = cpkb[1]; 
   valueCP = cpkb[2]; 
    
   melody = markovMakeMelody(rhythmCP, valueCP, prog); 
    
   return melody; 

end 

In [ ]: function markovMakeMelody(rhythmCP::Array, valueCP::Array, prog::Array) 
    
   chordlength = 96*4; 
    
   plength = chordlength*length(prog); 
    
   dpf_list = markovMakeDPFlist(rhythmCP, plength); 

   values = markovMakeMelValues(valueCP, dpf_list, prog); 
    
   melody = constructMelody(dpf_list, values); 
    
   return melody; 

end 
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In [ ]: function markovMakeDPFlist(rhythmCP::Array, plength::Int) 
   dpf_list = []; 
    
   phrase_list = []; 
    
   quit = 0; 
   current_time = 0; 
   i = 2; 
    
   push!(phrase_list, markovNextMRPhrase(rhythmCP, ["Start"], current_time, plength)); 
    
   current_time = current_time + phrase_list[1][2]; 
    
   if current_time >= plength 
       quit = 1; 
   end 
    
   while quit == 0 
       prior = phrase_list[i-1][1]; 
       phrase = markovNextMRPhrase(rhythmCP, [prior], current_time, plength); 
       push!(phrase_list, phrase); 
       current_time = current_time + phrase_list[i][2]; 
        
       if current_time >= plength 
           quit = 1; 
       end 
        
       i += 1; 
   end 
    
   running_position = 0; 
    
   for j in 1:length(phrase_list) 
       phrase = phrase_list[j][1]; 
       l = phrase_list[j][2]; 
        
       if (phrase[1] != "REST" && phrase != "REST") 

           for k in 1:length(phrase) 
                
               d = phrase[k][1]; 
               p = phrase[k][2] + running_position; 
               f = 0; 
               if k == 1 
                   f = 1; 
               end 
               dpf = [d,p,f]; 
                
               push!(dpf_list, dpf); 
           end 
       end 
        
       running_position += l; 
        
   end 
    
   return dpf_list; 

end 



87

In [ ]: function markovNextMRPhrase(rhythmCP::Array, prior::Array, current_time::Int, plength::Int) 
   index = findfirst(x -> (x[1] == prior[1]), rhythmCP); 
    
   if index == 0 
       index = rand(1:length(rhythmCP)); 
   end 
    
   entry = rhythmCP[index]; 
   dist = entry[2]; 
    
   n = rand(); 
   runningsum = 0; 
   next = ""; 
    
   for i in 1:length(dist) 
       runningsum += dist[i][2]; 
       if n < runningsum 
           next = dist[i][1]; 
           break; 
       end 
   end 
    
   if (next == "REST" || next[1] == "REST") 
       l = mod(current_time,96*4); 
   else 
       l = trunc(Int,next[length(next)][1] + next[length(next)][2]); 
       if l > (plength - current_time) 
           next = "REST"; 
           l = (plength - current_time); 
       end 
   end 
    
   return([next,l]); 

end 

In [ ]: function getPhraseLength(phrase::String) 
   length = 0; 
    
   if phrase != "REST" 
       phrase_vector = split(phrase,"|"); 
       for i in 1:length(phrase_vector) 
           dp_strings = split(phrase_vector[k],";"); 
           d = parse(Int,dp_strings[1]); 
           length += d; 
       end 
   end 
    
   return length; 

end 
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In [ ]: function markovMakeMelValues(valueCP::Array, dpf_list::Array, prog::Array) 
   values = []; 
    
   for i in 1:length(dpf_list) 
       dpf = dpf_list[i]; 
        
       timing = dpf[1] + dpf[2]; 
       chord_n = div(timing, 96*4) + 1; 
       chordname = makeChordLabel(prog[chord_n]); 
        
       if dpf[3] == 1 
           prior = "Start_"*chordname; 
       else 
           if i == 1 
               print("ERROR in markovMakeMelValues: when i is 1 dpf[3] != 1\n"); 
           end 
           prior = string(trunc(Int,values[i-1]))*"_"*chordname; 
       end 

       value = markovNextValue(valueCP, prior); 
        
       push!(values,value); 
   end 
    
   return(values);         

end 

In [ ]: function markovNextValue(valueCP::Array, prior::String) 
   index = findfirst(x -> (x[1] == prior), valueCP); 
    
   if index == 0 
       index = findfirst(x -> (x[1][1:2] == prior[1:2]), valueCP); 
   end 
    
   entry = valueCP[index]; 
   dist = entry[2]; 
    
   n = rand(); 
   runningsum = 0; 
   next = 0; 
    
   for i in 1:length(dist) 
       runningsum += dist[i][2]; 
       if n < runningsum 
           next = dist[i][1]; 
           break; 
       end 
   end 
    
   return(next); 

end 

In [ ]: function constructMelody(dpf_list::Array, values::Array) 
   melody = []; 
    
   l = length(dpf_list); 
    
   for i in 1:l 
       note = MIDI.Note(values[i], dpf_list[i][1], dpf_list[i][2], 0); 
       push!(melody,note); 
   end 
    
   return(melody); 

end 

Higher Order Writing/Reading
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In [ ]: function writeModel(filename::String,results::Array) 
   cpkb_M = results[1]; 
   cpkb_m = results[2]; 
   sub_probs = results[3]; 
   rpkb = results[4]; 
   mel_M = results[5]; 
   mel_m = results[6]; 
    
   open(filename,"w") do f      
       write(f, string(cpkb_M)); 
       write(f, "\n"); 
        
       write(f, string(cpkb_m)); 
       write(f, "\n"); 
        
       write(f, string(sub_probs)); 
       write(f, "\n"); 
        
       write(f, string(rpkb)); 
       write(f, "\n"); 
        
       write(f, string(mel_M)); 
       write(f, "\n"); 
        
       write(f, string(mel_m)); 
       write(f, "\n"); 
   end 

end 

In [ ]: function readModel(filename::String) 
   results = []; 
    
   open(filename) do f 
       lines = readlines(f); 
        
       major = lines[1]; 
       minor = lines[2]; 
       subprobs = lines[3]; 
       rpkb = lines[4]; 
       mel_M = lines[5]; 
       mel_m = lines[6]; 
        
       push!(results, eval(parse(major))); 
       push!(results, eval(parse(minor))); 
       push!(results, eval(parse(subprobs))); 
       push!(results, eval(parse(rpkb))); 
       push!(results, eval(parse(mel_M))); 
       push!(results, eval(parse(mel_m))); 
   end 
    
   return results; 

end 

In [ ]: function finalPreProc(filenames::Array{String}) 
   processAll(filenames); 

end 

In [ ]: function finalMakeModel(filenames::Array{String}, modelname::String) 

   model = readAllChords(filenames); 
    
   writeModel(modelname, model); 

end 
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In [ ]: function finalGenerate(filename::String, mode::String, offset::Int, plength::Int, outname::String) 
    
   model = readModel(filename); 
    
   cpkb_M = model[1]; 
   cpkb_m = model[2]; 
   sub_probs = model[3]; 
   rpkb = model[4]; 
   mel_M = model[5]; 
   mel_m = model[6]; 
    
   prog = generateProgression(cpkb_M, cpkb_m, sub_probs, mode, plength); 
   rhythms = generateRhythmProg(rpkb, plength); 
   melody = generateMelody(mel_M, mel_m, mode, prog); 
    
   outputProgression(prog, rhythms, melody, offset, outname); 

end 

Execution

Parameters

Populate these parameters to set up final execution functions below

In [ ]: # List of input file names for preprocessing 
filenames_pre = ["example1.mid", "example2.mid"]; 

# List of preprocessed input file names -- note that this list will have to be populated after running preprocess
ing on the input files and observing the output 
filenames = ["Major_example1.mid", "Minor_example1.mid"]; 

# Name to give model text file, can be whatever, should have ".txt" extension 
modelname = "model.txt"; 

# Mode for output ("Major" or "Minor") 
mode = "Major"; 

# Interval by which to transpose output, any reasonable (resulting notes will be in a register humans can hear) n
egative or nonnegative integer 
offset = 0; 

# Number of measures to generate, works best as a multiple of 4 
plength = 16; 

# Name to give output MIDI file, can be whatever, don't include ".mid" extension 
outname = "radsong"; 

Preprocessing Execution

In [ ]: finalPreProc(filenames_pre); 

Model Learning Execution

In [ ]: finalMakeModel(filenames, modelname); 

Generation Execution

In [ ]: finalGenerate(modelname, mode, offset, plength, outname); 



Appendix B

Corpus Description

Title Composer Key

Musette Bach, J.S. G Major

Little Prelude in F Bach, J.S. F Major

Ecossaise In G Beethoven, L. G Major

Fantasie Allegro Blohm, S. F Major

Pastorella Blohm, S. F Major

Prince of Denmark’s March Clarke, J. D Major

Adagio Mozart, A. C Major

Canon in D Pachelbel, J. D Major

Suite in G Major: Prelude &

Almand
Purcell, H. G Major

La Joyeuse Rameau, J. D Major

#13 in A Minor Bach, J.S. A Minor

English Suite No. 06 in D Mi-

nor: Gavotte
Bach, J.S. D Minor

Hungarian Dance No. 5 Brahms, J. D Minor

Pavane Faure, G. F# Minor

Melpomene: Praeludium &

Allemande
Fischer, J. A Minor
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Piano Solo Tchaikovsky, P. A Minor

Bourree Telemann, G.P. A Minor

Forever Rachel Uematsu, N. G Minor

Main Theme, Final Fantasy

IV
Uematsu, N. A Minor

Terra’s Theme Uematsu, N. G Minor



Appendix C

Output Sheet Music

Perhaps some arcane technique exists, beyond the eldritch veil separating possibility

from imagination, for coaxing simple paper to emit music using nothing more than

printed ink. If so, it eludes the grasp of our most sophisticated science. In any case, the

author has no access to such arts.

We are forced to encode music symbolically, instead. What follows are examples of

Composobot’s compositions, one in Major and one in Minor, encoded in sheet music.

It isn’t ideal, but all the information is there. These pages would sing, if wishing could

but make it so.
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Figure C.1: Composobot Output: Major

Figure C.2: Composobot Output: Minor
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