Math 4230 Assignment 4, due Wednesday, February 16th.

- (1) Chapter 3.2, #6: Establish the trigonometric identities $\sin^2(z) + \cos^2(z) = 1$ and $\sin(z_1 + z_2) = \sin(z_1)\cos(z_2) + \sin(z_2)\cos(z_1)$ for the complex sine and cosine.
- (2) Find all complex numbers z such that $e^{iz} = 4$.
- (3) Ch 3.2 #22: Prove that for any *m* distinct complex numbers $\lambda_1, \lambda_2, \ldots, \lambda_m$ ($\lambda_i \neq \lambda_j$ for $i \neq j$), the functions $e^{\lambda_1 z}, e^{\lambda_2 z}, \ldots, e^{\lambda_m z}$ are *linearly independent* over \mathbb{C} . In other words, show that if $c_1 e^{\lambda_1 z} + c_2 e^{\lambda_2 z} + \cdots + c_m e^{\lambda_m z} = 0$ for all *z*, the $c_1 = c_2 = \cdots = c_m = 0$. [HINT: Proceed by induction on *m*. In the inductive step, divide by one of the exponentials and then take the derivative.]
- (4) Solve the following equations for all possible values of z:
 - (a) $e^z = 4i$ (b) $Log(z^3 - 1) = \frac{i\pi}{2}$ (c) $e^{3z} + 27 = 0$.
- (5) Chapter 3.3, #12: Find a branch of the function $\log(z^2 + 1)$ that is analytic at z = 0 and is equal to $2\pi i$ at z = 0.
- (6) Chapter 3.4, #4: Find a function $\phi(z)$ which is harmonic in the upper half plane (Im(z) > 0) and which is equal to 0 on the real axis for x < -1 and x > 2, and equal to π for -1 < x < 2.
- (7) Find all the values of the following quantities:
 - (a) i^{2i}
 - (b) $(2i+1)^2$
 - (c) $(-1)^{3/5}$.
- (8) Chapter 3.5, #4: Is 1 raised to any complex power always equal to 1?