
Math 4230 Assignment 8, due Wednesday, April 13th.

(1) Find the steady-state current in the circuit shown in Figure 3.23c (page 144) but
with C = 2, L = R1 = R2 = 1.

(2) Find the circle of convergence of the following power series using the formula from
exercise 5.3.2: R = 1/(limn→∞ |an+1
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(3) Find the power series solution
∑∞
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n around z = 0 which satisfies the differential

equation
(1− z2)g′′ − 4zg − 2g = 0, g(0) = 1, g′(0) = 0.

(4) In problem 5.3.17, page 261, the Gaussian hypergeometric series 2F1(b, c; d; z) is de-
fined. If g(z) = 1

(1−z2)2 , show that g(z) = 2F1(2, 3; 3; z2). It may help to use the

identity g(z) = 1
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