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Abstract

Normal surfaces and spun normal surfaces in ideal triangulations are described
by the quantities of disk types belonging to the surface. In the case of spun
normal surfaces, there may be infinitely many triangles of some types. In this
paper we introduce the concept of a retracted spun normal surface. A retracted
spun normal surface comes from retracting a spun normal surface, resulting in
a finite surface (possibly) with boundary while maintaining many properties of
the spun normal surface. The finiteness of retracted spun normal surfaces allows
for the algorithms introduced in this paper to compute various properties of the
surface. This paper shows that every spun normal surface has a corresponding
retracted spun normal surface, and provides an implementation to construct a
retracted spun normal surface from a spun normal surface. Additionally, im-
plementations are provided for computing the connectedness, boundary slopes,
number of boundary components, euler characteristic, and orientability of re-
tracted spun normal surfaces, which together provide sufficient information to
classify retracted spun normal surfaces.
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1 Introduction

Given a triangulation T , the vector representation of closed surfaces can found
using existing methods. A spun normal surface, which is not closed, has in-
finitely many triangles resulting in some coordinates being infinite. In this
paper we provide methods for finding retracted spun normal surface solutions
by truncating the spun normal surface with a boundary and giving a description
of a finite surface and the boundary. We also provide a method for classifying
the retracted spun normal surface.

Definition 1.1. (Normal Disk) Let T be a 3D triangulation and T be a tetra-
hedron in T . A normal disk is T is a topological disk embedded in T which
does not contain any of the vertices in T and lies in the interior of T and whose
boundary lies on either three of the faces of T or four of the faces of T . A disk
with a boundary on exactly three faces of T is called a triangular disk and a
disk with boundary on four faces of T is called a quadrilateral disk. Finally, we
say a triangular disk surrounds a vertex v if the disk cuts v off from the other
three vertices in the tetrahedron.

Figure 1: The normal disk types in a tetrahedron.

Definition 1.2. (Normal Surface and Normal Surface Solution) Let T be a
3D triangulation comprised of t tetrahedra indexed by 0, 1, ..., t− 1. A normal
surface is a finite collection of disjoint normal disks in T such that each edge
bounding a normal disk is identified with another edge bounding a normal disk
via piece-wise linear homeomorphism induced by the face gluings of T . A normal
surface solution vector is a vector in R7t where each coordinate corresponds to a
normal disk type. Let ti,j be the number of normal triangle disks in tetrahedron
i surrounding vertex j ∈ {0, 1, 2, 3} of tetrahedron i. Let qi,0j be the number of
normal quadrilateral disks in tetrahedron i which do not intersect the edge [0j],
j ∈ {1, 2, 3} in tetrahedron i. Then the normal surface solution vector is

v = (t0,0, t0,1, t0,2, t0,3, q0,01, q1,02,q1,03,

t1,0, t1,1, t1,2, t1,3, q1,01, q1,02,q1,03,

. . . , qt−1,03)

Notation. It will prove convenient to sometimes describe a quadrilateral disk
by any edge that is not incident to it and also to not worry about the orientation
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of the edge. For example, qi,01 = qi,10 = qi,23 = qi,32. We note that this notation
convention still unambiguously identifies a quadrilateral type. We will also use
I = {(0, 01), (0, 02), (0, 03), ...(t−1, 01), (t−1, 02), (t−1, 03)} as an indexing set
of the quadrilateral disk types and denote a disk type by qi with i ∈ I.

Definition 1.3. (Standard Matching Equations) Let T be a triangulation and
Fi,Fj be a pair of tetrahedral faces belonging tetrahedra Ti and Tj which are
glued together in T . Let a a ∈ {0, 1, 2, 3} be a vertex in Fi and a′ ∈ {0, 1, 2, 3} be
the vertex in Fj which is identified with a via the face gluing i(abc) = j(a′b′c′).
There is exactly one triangle disk type and one quadrilateral disk type in each
Ti and Tj with an edge on face Fi and Fj which cuts off vertex a and vertex
a′ in Ti and Tj respectively. The standard matching equation corresponding to
the gluing between Fi and Fj and vertices a and a′ is

ti,a + qi,ad = tj,a′ + qj,a′d′

The set of solutions to the standard matching equations represents the nor-
mal surfaces that can exist in T .

d

a

b

c

d′

a′

b′

c′

Tetrahedron i

Tetrahedron j

Figure 2: Standard matching equations example.
The equation is ti,a + qi,ad = tj,a′ + qj,a′d′ where

ti,a = 1, qi,ad = 1, tj,a′ = 2, qj,a′d′ = 0

Quadrilateral (Q) matching equations (defined in section 2) can be obtained
by relating quantities of quadrilateral disk types indecent to an edge of a tri-
angulation T . Similar to the standard matching equations, the Q matching
equations are homogeneous and the solution set contains vector representations
of the normal surfaces that can exist in a triangulation T . Unlike the standard
matching equations where the solutions are all normal surfaces, the solution set
to the Q-matching equations also contains solutions representing spun normal
surfaces which are not normal surfaces because they contain infinitely many
triangular disks. However, solutions to the Q-matching equations have the ad-
vantage of being 3t dimensional where t is the number of tetrahedron, so finding
solutions is more efficient than solving the standard matching equations which
are of dimension 7t.
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1.1 Summary of results

The main results of this report are contained in Section 6.
We define a retracted spun normal surface which is a finite subset of a

spun normal surface which retains much of the information about the spun
normal surface. Since the retracted spun normal surface is finite, computing
the properties is more manageable. For example, the culminating result of
this report (Corollary 6.10) classifies the topological type of the retracted spun
normal surface.

2 Background

Definition 2.1. (2D Triangulation) A 2D Triangulation is a finite collection of
triangles t1, . . . , tn, where some or all of the 3n triangle edges are identified in
pairs and where the resulting topological space is a compact 2-manifold.

Definition 2.2. (3D Triangulation) A 3D Triangulation or triangulation is a
finite collection of tetrahedra T1, . . . , Tt, where

(i) some or all of the 4t tetrahedron faces are identified in pairs and each face
belongs to at most one pair and no face is glued to itself and

(ii) each equivalence class of edges in the triangulation can be given a local
orientation, that is no edge is glued to itself.

Given a triangulation T the pairs of faces which are identified lead to vertices
of the tetrahedra being identified.

Notation. A face gluing between tetrahedra Ti and Tj that identifies the or-
dered list of vertices a, b, c in Ti with the ordered list a′, b′, c′ in Tj can be
recorded as i(abc) = j(a′b′c′). This agrees with the notation convention of [2].

Since each triangle disk corresponds to exactly one vertex in the triangulation
it will serve useful to have some nomenclature to talk about the triangle disks
surrounding a vertex in a triangulation. Many of the algorithm in this report
will use information about this collection of disks.

Definition 2.3. (Vertex Link) Let T be a triangulation and v be some vertex of
T . The vertex link of v is the normal surface containing each normal triangular
disk surrounding v and no other disks.

Definition 2.4. (Ideal Triangulation) A ideal triangulation is a 3D triangula-
tion where each vertex link is a torus.

In this report we will be concerning ourselves only with 3D triangulations
which are ideal triangulations as the core methods rely on the vertex link being
a torus.

Definition 2.5. (1-Skeleton) A 1-skeleton of a triangulation T is the union of
edges and vertices in T .
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Definition 2.6. (2-Skeleton) A 2-skeleton of a triangulation T is the union of
triangles, edges, and vertices in T .

Definition 2.7. (locally a-oriented, locally b-oriented, locally c-oriented quadri-
laterals of an oriented tetrahedral edge) Let T be a 3D triangulation. Let
e = [a, b] be an oriented edge in a tetrahedron Ti of T . The quadrilateral disk
type qi,ab in Ti is not incident to the edge e and we say qi,ab is a c-oriented
quadrilateral disk with respect to e. Generically denote one of the other two
quadrilateral disk types in Ti by q′i (so q′i ∈ {qi,ac, qi,ad}), which each have a
corner with two edges incident with e. If rotating counter-clockwise about e
through T connects face f0 of T to the face f1 of T , we say a quadrilateral q′i
is locally a-oriented relative to e if the normal arc in f0 cuts off vertex a (and
consequently the normal arc of q′i in face f1 cuts off vertex b). A quadrilateral
q′i is locally b-oriented relative to e if the normal arc in f0 cuts off vertex b (and
consequently the normal arc of q′i in face f1 cuts off vertex a).

Figure 3: Example of surface through an edge in a triangulation

Definition 2.8. (Q-Matching Equations and spun normal surface solution vec-
tor) Let T be a triangulation with t tetrahedra and ek be an edge class in T ,
that is a circularly ordered list ek,j of tetrahedral edges identified by the face-
pairings of T . Arbitrarily assign a orientation to ek. Start with Vk = (ϵk,i) as
the 3t dimensional zero vector where each entry corresponds to a quadrilateral
disk type (with i ∈ I = {(0, 01), (0, 02), ..., (t − 1, 01), (t − 1, 02), (t − 1, 03)}).
Rotate about ek counter-clockwise through the tetrahedra incident to ek. For
each tetrahedral edge ek,j , denote the tetrahedron contained ek,j by T . For each
quadrilateral disk type qi in T if qi is locally a-oriented relative to ek,j , add +1
to the coordinate i in Vk. If qi is locally b-oriented, add −1 to the corresponding
coordinate in Vk. Finally, if qi is locally c-oriented (does not touch ek), add 0
or do nothing. For each ek, we have the following equation∑

i∈I

ϵk,iqi = 0

where the qi is a count of the number of quadrilateral disks of type i. The Q-
Matching equations are the system of linear equations constructed by defining
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one equation as above for each edge ek in T . If S ∈ R3t is a solution to this
system we say S is a solution vector to the Q-Matching equations or a spun
normal surface solution vector.

It is shown by Tollefson [5] that an admissible solution to the Q-matching
equations uniquely determines a normal surface without trivial components.
We will discuss converting between a solution vector to these equations and a
solution vector to the standard matching equations later.

Definition 2.9. (Spun Normal Surface) Let T be an ideal triangulation com-
prised of t tetrahedra. A spun normal surface is a collection of disjoint normal
disks in T such that each edge bounding a normal disk is identified with another
edge bounding a normal disk via piece-wise linear homeomorphism induced by
the face gluings of T and the quadrilateral coordinates corresponding to the
quantities of quadrilateral disk types satisfies the Q-matching equations.

A key difference between spun normal surfaces and normal surfaces is that
there exist spun normal surfaces that do not satisfy the standard matching
equations. Such surfaces will contain infinitely many copies of one or more
vertex links in the corresponding triangulation. The core of this report is about
how to cut such surfaces off in the vertex links resulting in a surface with
finitely many disks and information about how the surface was cut. To find a
satisfactory place to cut a spun normal surface within a vertex link we will find
the meridian and longitude of the vertex link (see following definitions).

Definition 2.10. (Meridian) Let T be a 2D triangulation of a torus and v be
a vertex in T . A meridian M at v in T is a shortest cycle in T containing
v, which when removed from T , results in a 2D triangulation T ′ which is still
connected.

Definition 2.11. (Longitude) Let T be a 2D triangulation of a torus, M be a
meridian in T , and u be a vertex in M . A longitude Λ of M and u in T is a
shortest cycle in T containing u such that Λ ̸= M and when M and Λ are both
removed from T , the resulting 2D-triangulation is still connected.

Note that these definitions of meridian and longitude are specific definitions
which serve useful to this report. More general definitions of meridian and
longitude exist.

Definition 2.12. Given an triangulation T , a peripheral system of curves at
an ideal vertex is a meridian and longitude for the link of that vertex given
in terms of normal arcs in T . A complete peripheral system is comprised of a
meridian and longitude for each ideal vertex of T .

Given a triangulation T with c ideal vertices the complete peripheral system
Γ will contain c meridians and c longitudes for a total of 2c curves.

Definition 2.13. (Retracted Spun Normal Surface and Retracted Spun Nor-
mal Surface Solution) Given a triangulation T with c ideal vertices, S a solution
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to the Q-matching equations for T , and a complete peripheral system of curves
Γ for T , a retracted spun normal surface solution is a vector in R7t+2c with 7t
coordinates corresponding to the quantities of the 7t disk types and 2c coordi-
nates corresponding to the quantities of boundary components corresponding
to the 2c curves in Γ.

A retracted spun normal surface comes from a spun normal surface in which
a vertex has been retracted creating a boundary on the surface. A retracted
spun normal surface solution contains the quadrilateral and triangular disk co-
ordinates S of the retracted spun normal surface, the meridian and longitude
coordinates µ,λ, and the meridian and longitude cycles corresponding to µ and
λ.

Note that when each of the 2c peripheral system coordinates are zero, then
the 7t coordinates corresponding to normal disk types satisfy the standard
matching equations. So a retracted spun normal surface with zeros in each
peripheral system coordinate is a normal surface.

2.1 Background algorithms

Here we introduce an example triangulation which will be used for each of the
examples in this section.
Tetrahedron Face 012 Face 013 Face 023 Face 123

0 3(012) 1(021) 2(023) 1(123)
1 0(031) 3(321) 2(013) 0(123)
2 3(032) 1(023) 0(023) 3(310)
3 0(012) 2(321) 2(021) 1(310)

The Q-matching equations for the above triangulation are:

2q0,02 − 2q0,03 + q1,01 − q1,02 + q2,01 − 2q2,02 + q2,03 − q3,01 + q3,03 = 0

−q0,01 + q0,03 + q2,01 − q2,03 + q3,01 − q3,03 = 0

q0,01 − q0,02 − q1,01 + q1,03 − 2q2,01 + 2q2,02 + q3,01 − q3,02 = 0

−q0,02 + q0,03 + q1,02 − q1,03 − q3,01 + q3,02 = 0

The standard matching equations are:

t0,0 + q0,03 − t3,0 − q3,03 = 0

t0,0 + q0,01 − t2,0 − q2,01 = 0

t0,0 + q0,02 − t1,0 − q1,03 = 0

t0,1 + q0,02 − t3,1 − q3,02 = 0

t0,1 + q0,01 − t1,1 − q1,01 = 0

t0,1 + q0,03 − t1,2 − q1,01 = 0

t0,2 + q0,01 − t3,2 − q3,01 = 0
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t0,2 + q0,02 − t1,2 − q1,02 = 0

t0,2 + q0,03 − t2,2 − q2,03 = 0

t0,3 + q0,01 − t1,1 − q1,02 = 0

t0,3 + q0,03 − t1,3 − q1,03 = 0

t0,3 + q0,02 − t2,3 − q2,02 = 0

t1,0 + q1,01 − t2,0 − q2,02 = 0

t1,0 + q1,02 − t3,3 − q3,03 = 0

t1,1 + q1,03 − t3,2 − q3,02 = 0

t1,2 + q1,03 − t2,1 − q2,03 = 0

t1,3 + q1,01 − t3,1 − q3,01 = 0

t1,3 + q1,02 − t2,3 − q2,01 = 0

t2,0 + q2,03 − t3,0 − q3,01 = 0

t2,1 + q2,02 − t3,3 − q3,02 = 0

t2,1 + q2,01 − t3,3 − q3,01 = 0

t2,2 + q2,01 − t3,2 − q3,03 = 0

t2,2 + q2,02 − t3,1 − q3,03 = 0

t2,3 + q2,03 − t3,0 − q3,02 = 0

A central question is under what circumstances does a solution to the Q-
matching equations also extend to a solution of the standard equations. A
general method due to Burton will be described later in Algorithm 1, but this
can be done concretely as in the next example.

Example 2.14. An example that is a solution to the Q-matching equations
which can be promoted to a solution to the standard matching is given by:

Sq = (0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0)

To promote this to a standard solution (in R4(7) = R28), we will apply a gen-
eralization of Burton’s method (Algorithm 1) to see if the solution corresponds
to a normal surface, and if so, find the solution to the standard matching equa-
tions. The main idea of the algorithm is that for each equation, if one triangle
coordinate in the equation is set, then the other triangle coordinate is deter-
mined by the set triangle coordinate and the quadrilateral coordinates in Sq.
Additionally, since each equation has two triangle coordinates with opposite
sign, if we find a solution with some coordinates having negative values we can
shift each triangle coordinate up by the smallest negative value and we will have
a solution with all non-negative coordinates. Since vertex links are connected,
we can start at any arbitrary triangle coordinate in a given vertex link, set the
coordinate to zero, and perform a depth first search through the vertex link
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assigning the coordinates as we go. Note that this example triangulation has
only one vertex link, so we can pick any triangle coordinate to start. We will
start with t0,0 = 0. Then performing the depth first search we have the following

t0,0 + q0,03 − t3,0 − q3,03 = 0 ⇒ t3,0 = 0

t2,0 + q2,03 − t3,0 − q3,01 = 0 ⇒ t2,0 = 0

t1,0 + q1,01 − t2,0 − q2,02 = 0 ⇒ t1,0 = 1

t1,0 + q1,02 − t3,3 − q3,03 = 0 ⇒ t3,3 = 1

t2,1 + q2,02 − t3,3 − q3,02 = 0 ⇒ t2,1 = 1

t1,2 + q1,03 − t2,1 − q2,03 = 0 ⇒ t1,2 = 1

t0,1 + q0,03 − t1,2 − q1,01 = 0 ⇒ t0,1 = 1

t0,1 + q0,02 − t3,1 − q3,02 = 0 ⇒ t3,1 = 1

t1,3 + q1,01 − t3,1 − q3,01 = 0 ⇒ t1,3 = 1

t0,3 + q0,03 − t1,3 − q1,03 = 0 ⇒ t0,3 = 1

t0,3 + q0,01 − t1,1 − q1,02 = 0 ⇒ t1,1 = 1

t1,1 + q1,03 − t3,2 − q3,02 = 0 ⇒ t3,2 = 0

t0,2 + q0,01 − t3,2 − q3,01 = 0 ⇒ t0,2 = 0

t0,2 + q0,03 − t2,2 − q2,03 = 0 ⇒ t2,2 = 0

t1,3 + q1,02 − t2,3 − q2,01 = 0 ⇒ t2,3 = 1

Now each triangle coordinate has been set. We now check that these co-
ordinates are consistent with each of the other standard matching equations.
We find they are all consistent, so we have found the coordinates for a normal
surface solution.

S = (0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0)

However, the method outlined above does not always succeed in finding a
consistent solution as recorded by the following example.

Example 2.15. An example of a solution to the Q-matching equations, which
can not be promoted to a solution to the standard matching equations is given
by:

Sq = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0)

To see this will not work, we can try to proceed as above. Performing the gen-
eralization of Burton’s method (Algorithm 1) we find the following coordinates

S = (2, 1, 1, 1, 2, 1, 1, 0, 2, 2, 1, 1, 2, 0, 1, 2)
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When checking against all standard matching equations we find S is inconsistent
with each of the following equations.

t0,0 + q0,02 − t1,0 − q1,03 = 0

t1,3 + q1,02 − t2,3 − q2,01 = 0

t2,1 + q2,02 − t3,3 − q3,02 = 0

t2,2 + q2,02 − t3,1 − q3,03 = 0

t2,3 + q2,03 − t3,0 − q3,02 = 0

In particular, if we look the the pair of standard matching equations

t2,1 + q2,02 − t3,3 − q3,02 = 0

t2,1 + q2,01 − t3,3 − q3,01 = 0

and substitute the quadrilateral coordinates

t2,1 + 0− t3,3 − 1 = 0

t2,1 + 0− t3,3 − 0 = 0

We can see there does not exist a solution with finitely many triangles. The
convention is to set all the triangle coordinates in this vertex link (which for this
example is all of the triangle coordinates, since we have only one vertex link) to
infinity. With this convention, we do have a solution which is consistent with
repeatably gluing in new triangles to unpaired normal arcs. Let v be the one
vertex class in the triangulation. The surface is said to spin into v, hence the
name spun normal surface. In future examples we will look at how the spun
normal surface corresponding to Sq can be cut off resulting in a retracted spun
normal surface, which has finitely many disks and a boundary.

The implementation of Burton’s Method (Algorithm 1, see also [4]) differs
from the original implementation in [1, Algorithm 3.12] since it is used to check
if a Q-matching solution vector corresponds to a normal surface or not. The
original implementation takes only Q-matching coordinates which correspond
to a normal surface, then returns the normal surface solution vector. The above
implementation takes any Q-matching solution vector, runs the algorithm as
usual, then checks if the coordinates are consistent with the standard matching
equations. If they are, it returns True, otherwise it returns False. When
returning False, we know the Q-matching solution vector corresponds to a
spun normal surface.

In the case that Algorithm 1 returns False, we still can build a solution vec-
tor with finite coordinates, but this vector does not correspond to a a standard
normal surface. Instead, it corresponds to a retracted spun normal surface. The
remainder of this report will be dedicated to detailing the process of finding a
solution in this case.
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Algorithm 1 A generalization of Burton’s method (compare to [1, Algorithm
3.12]) for going from Q-matching coordinates to standard coordinates

Input: A triangulation T and a solution S to the Q-matching equations.
Create an array to represent if a triangular disk type has been visited
for Each vertex v ∈ T do

Pick a triangular disk type t surrounding v
Set the coordinate corresponding to t to 0.
Perform a depth-first-search starting at t through the adjacent triangles.

During the depth-first-search, when a triangle ti is visited coming from
a coordinate tj , there is a standard matching equation for T of the form
ti + qk = tj + qm. Use the known values of tj , qk, qm to determine the
value of ti. Set the coordinate corresponding to ti to the determined
value.

Find the minimum value λ of the assigned triangle coordinates
Add −λ to each of the assigned triangle coordinates.

end for
Return a boolean that records if these values are a solution to the stan-
dard matching equations and if so, return coordinates.
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3 Meridian and Longitude

Notation: Vertices in the vertex link will be denoted vi,j,k where ti,j is the disk
type and [jk] is the edge of tetrahedron i corresponding to the vertex in the
link. For example, in Figure 4, the triangle t0,0 has vertices t0,0,1,t0,0,2, and
t0,0,3, which are the intersections of t0,0 and the edges of tetrahedron 0 labeled
by [01],[02] and [03], respectively. Edges in the vertex link will be denoted ei,j,k,l
where ei,j,k,l is the arc between vertices vi,j,k and vi,j,l.

Example 3.1. Finding a meridian and longitude of the vertex link for the ex-
ample triangulation
We will go through (Algorithm 2) to find the meridian of the vertex link for the
example triangulation. The vertex link can be seen in Figure 4. The meridian
finding algorithm implemented in this report is a breath first search through
the 1-skeleton of the vertex link from some starting vertex v which finds a
shortest cycle C such that after ungluing along the edges of C the resulting
2D-triangulation is still connected. While going through the algorithm ver-
tices will be marked as visited. When doing so, each identified vertex will also
be considered visited. For example, if v0,0,1 is marked as visited then each of
v0,3,2, v1,0,2, v2,3,2, v3,0,1 are also marked visited. The algorithm allows us to
choose any vertex in the vertex link to start at. We will start at the lexico-
graphically smallest vertex, namely v0,0,1.

Create an array to represent if a vertex has been visited.
Create an empty list of paths paths.
Mark v0,0,1 as visited.
Add the path [v0,0,1] to the list of paths.
Create an empty list of paths newpaths.
Retrieve the next path p from the paths (path [v0,0,1]).
Retrieve the last vertex in p (vertex v0,0,1).
Create a new path [v0,0,1, e0,0,1,2, v0,0,2].
Check if [v0,0,1, e0,0,1,2, v0,0,2] is a cycle.
Since it is not a cycle, add it to newpaths.
Mark vertex v0,0,2 as visited.
Create a new path [v0,0,1, e0,0,1,3, v0,0,3].
Check if [v0,0,1, e0,0,1,3, v0,0,3] is a cycle.
Since it is not a cycle, add it to newpaths.
Mark vertex v0,0,3 as visited.
Create a new path [v0,0,1, e0,3,2,1, v0,3,1].
Check if [v0,0,1, e0,3,2,1, v0,3,1] is a cycle.
Since it is not a cycle, add it to newpaths.
Mark vertex v0,3,1 as visited.
Create a new path [v0,0,1, e0,3,2,0, v0,3,0].
Check if [v0,0,1, e0,3,2,0, v0,3,0] is a cycle.
Since it is not a cycle, add it to newpaths.
Mark vertex v0,3,0 as visited.
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Create a new path [v0,0,1, e2,3,1,2, v2,3,2].
Check if [v0,0,1, e2,3,1,2, v2,3,2] is a cycle.
Since it is a cycle, unglue the edge in the path and check if the vertex link is
still connected.
Since it is still connected, we have found a meridian.
Return [v0,0,1, e2,3,1,2, v2,3,2].

Comparing this result against Figure 4, we can see that the edge from 1 to
2 in t2,3 is edge in the vertex link picked out by starting at vertex 1 of t0,0. We
point out that the result is sensitive to the starting vertex. For example, if we
start at vertex v1,2,0 then the edge from 3 to 0 in t1,2 is picked out instead.

The longitude finding algorithm (Algorithm 3) follows the same process as the
meridian algorithm with an additional check when a cycle C is found that C
differs from the meridian by at least one edge and the check for connectedness
checks that the vertex link is connected after ungluing both C and the merid-
ian. Since the algorithm follows the same process as above, and for brevity, we
will not go through each step by hand. The longitude found for the example
triangulation is [v0,0,1, e0,3,2,1, v0,3,1, e0,1,2,0, v0,1,0, e2,1,0,2, v2,1,2, e0,0,3,1, v0,0,1].

Note that when checking if the vertex link is still connected after ungluing
along a cycle in the meridian algorithm we are check for two possible cases.
Either the unglued vertex link is a cylinder without ends and is still connected, or
it is torus with a disk removed and is not connected. In the longitude algorithm,
ungluing a cycle and the meridian results in the unglued vertex link being a
either a disk and is still connected, or a cylinder with a hole cut out of it and is
not connected.
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Figure 4: The vertex link for the example triangulation

The meridian algorithm finds the shortest meridian from some starting ver-
tex, but does not find the shortest meridian in the entire vertex link. If the
shortest meridian in the vertex link is desired, one can perform the meridian
algorithm for each vertex in the vertex link and keeping the shortest one found.

We will see later in the report that the meridian and longitude of the vertex
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links in a triangulation provides a set of curves (a complete peripheral system)
for which boundaries can be created by cutting off the infinite copies of the
vertex links in a spun normal surface, allowing for us to construct a retracted
spun normal surface solution with finitely many disks.

Proposition 1. For each longitude Lv computed by Algorithm 3, there is at
least one edge in Lv which is not in the meridian of that vertex.

Proof. Proof by contradiction. Suppose Algorithm 3 returns a longitude L in
which all edges in L are also in the meridian. Since Algorithm 3 only returns
cycles, L is a cycle. Since each cycle found is check to not be the meridian, the
set of edges in L is a proper subset of the meridian. Since the meridian is a
cycle, any proper subset is not a cycle, so L is not a cycle and we have found a
contradiction.
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Algorithm 2 Meridian based at a point v

Input: A vertex link and starting vertex v in the 1-skeleton vertex link.
Create an array to represent if a vertex has been visited.
Create an empty array of paths paths
Add a path containing v and only v to paths
Mark the v as visited
Initialize meridian to None
while length of paths is greater than zero do

Create an empty array of paths new paths
for each path p in paths do

Retrieve the last vertex u in p
for each edge e containing u do

if e is the last edge in path p then
continue

end if
Retrieve the other vertex w in e.
if w has been visited then

Call the shortest path from v to w, p′. Trim the overlap between
p and p′ to create a cycle based at w.

Unglue the vertex link along C
if the vertex link is still connected then

We have found a meridian
if meridian is None or length of meridian > length of C

then
Assign C to meridian

end if
end if
Re-glue the vertex link along C.

else
Mark w as visited
Add the path p+ e+ w to new paths

end if
end for

end for
if meridian is not None then

return meridian
end if
Assign new paths to paths

end while
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Algorithm 3 Longitude based at a point after meridian is computed.

Input: A vertex link, a meridian, and a starting vertex v in the meridian.
Create an array to represent if a vertex has been visited.
Create an empty array of paths paths
Add a path containing v and only v to paths
Mark the v as visited
Initialize longitude to None
while length of paths is greater than zero do

Create an empty array of paths new paths
for each path p in paths do

Retrieve the last vertex u in p
for each edge e containing u do

if e is the last edge in path p then
continue

end if
Retrieve the other vertex w in e.
if w has been visited then

We have found a cycle.
Use the path from v to w and p to create the cycle C.
if C is not the meridian then

Unglue the vertex link along C and the meridian
if the vertex link is still connected then

We have found a longitude
if longitude is None or length of longitude is greater than

length of C then
Assign C to longitude

end if
end if
Re-glue the vertex link along C and the meridian

end if
else

Mark w as visited
Add the path p+ e+ w to new paths

end if
end for

end for
if longitude is not None then

return longitude
end if
Assign new paths to paths

end while
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3.1 Adjusted standard matching equations

Definition 3.2. (Positive and Negative Rotations of a Normal Triangle) Let T
be a triangulation and ti,j be a normal triangle disk of T . Let the four vertices
of tetrahedron i be j, a, b, c where, up to relabelling, a < b < c. A rotation in
ti,j in the direction of the perimeter from a to b to c to a is a positive rotation.
A rotation in ti,j in the direction of the perimeter from c to b to a to c is a
negative rotation. Positive rotations will be indicated with a 1, and negative
rotation with a −1.

Definition 3.3. (Oriented Normal Triangle) Let T be a triangulation and ti,j
be a normal triangle disk of T with a label indicating either a positive or negative
rotation. Then ti,j is an oriented normal triangle.

Definition 3.4. (Consistent Oriented Normal Triangles) Let T be a triangula-
tion and L be a vertex link of T . Let ti,j and tk,m be oriented normal triangles in
L which share an edge e in the 1-skeleton of L. If the direction along e induced
by the rotation of ti,j opposes the direction along e induced by the rotation of
tk,m then ti,j and tk,m are said to be consistent with each other.

Definition 3.5. (Oriented Vertex Link) Let T be a triangulation and L be a
vertex link of T in which each normal triangle in L is oriented and consistent
with each normal triangle it shares an edge with. Then L is an oriented vertex
link.

Definition 3.6. (Left side of an edge in a peripheral curve) Let T be a trian-
gulation and L be an oriented vertex link in T . Let P be a directed peripheral
curve of L. Let e be an edge in P . Let t1 and t2 be the two normal triangles
glued together at e. If the direction of e in P opposes the direction induced by
the rotation of t1, then t1 is on the left side of e, otherwise t2 in on the left side
of e.

Note that the above convention for left side is consistent with a positive
rotation corresponding to a clockwise rotation. If it were desired to have a
positive rotation correspond to counter clockwise rotation then the left side
would be the side with the triangle whose rotation follows the direction of the
edge.

Example 3.7. Orienting the vertex link for the example triangulation. When
orienting vertex links we will need to compute orientations such that each pair
of triangles sharing an edge are consistent. We will accomplish this by setting
one triangle orientation, then performing a breath first search computing con-
sistent orientations for the triangles as we go (See Algorithm 4). We will start
by orienting t0,0 with a positive rotation. Next we find a consistent orienta-
tion for t3,0. Since the vertex cut off by both triangles in their tetrahedron is
0 the orientation of t3,0 is the orientation of t0,0 times the sign of the tetra-
hedral permutation of the face gluing times −1. The permutation between
the tetrahedron from the face gluing is [0, 1, 2, 3] → [0, 1, 2, 3]. The permuta-
tion is even and the sign of the permutation is 1. The orientation of t3,0 is
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then (1)(1)(−1). In general, if sign(ti,j) denotes the orientation of ti,j and
sign(j) = 1 if j ∈ {0, 2} and −1 otherwise, and sign(ga→b) denotes the sign
of the permutation of tetrahedral vertices from a face gluing corresponding to
some triangle tk,m sharing and edge with ti,j , then the consistent orientation
of tk,m is (−1)sign(ga→b)sign(ti,j)sign(j)sign(m). The portion of the formula
(−1)sign(ga→b) corresponds to the change in orientation between the two tetra-
hedra. If the triangles change from cutting of 0 or 2 to 1 or 3, or vise versa,
then the there is a change of orientation of the triangles within their tetrahe-
dron, requiring a multiplication of −1 to keep the orientations consistent, which
is included in the formula as sign(j)sign(m). By inspection of Figure 4 we
can see a negative rotation of t3,0 gives a clockwise rotation consistent with the
clockwise rotation of t0,0 as desired. Continuing the breath first search we find
the following triangle orientations

t2,0 → −1

t1,0 → −1

t2,3 → +1

t3,3 → +1

t1,3 → +1

t0,3 → −1

t2,1 → +1

t3,1 → +1

t1,1 → +1

t1,2 → −1

t0,1 → −1

t2,2 → −1

t3,2 → −1

t0,2 → +1

Definition 3.8. (Adjusted standard matching equation) Let T be a triangula-
tion with oriented vertex links and let Γ be a complete set of peripheral curves.
Let E be a standard matching equation of T . Let L be the vertex link corre-
sponding to E and e be the edge in L corresponding to E. Let v be the vertex in
T corresponding to L. Let M and L be directed meridian and longitude of L in
Γ respectively. Let ti and qi be the normal triangle and normal quadrilateral on
the left side of e, and tj and qj be the normal triangle and normal quadrilateral
on the other side of e.

Case 1. If e is in both M and L, then the adjusted standard matching equation
corresponding to E is ti + qi + µv + λv = tj + qj .

Case 2. If e is in M and not in L, then the adjusted standard matching equation
corresponding to E is ti + qi + µv = tj + qj .
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Algorithm 4 Orienting a Vertex Link

Input: A triangulation T , an orientable vertex link L of T , a starting triangle
ti,j in L, and an orientation for ti,j .
Assign the input orientation to ti,j
Create an empty first in first out queue q.
Create an empty set visited of visited triangles.
Add ti,j to q
Add ti,j to visited
while visited is not empty do

Retrieve the next triangle tk,m from q
for Each triangle tn,l sharing an edge with tk,m in L do

if tn,l is not in visited then
Retrieve the permutation p between between tetrahedron k and n

for the face gluing corresponding to the shared edge from T .
if (m ∈ {0, 2} and l ∈ {0, 2}) or (m ∈ {1, 3} and l ∈ {1, 3}) then

Assign sign(p)(orientation of tk,m)(−1) as the orientation of tn,l
else

Assign sign(p)(orientation of tk,m) as the orientation of tn,l
end if
Add tn,l to visited
Add tn,l to q

end if
end for

end while
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Case 3. If e is not in M and is in L, then the adjusted standard matching
equation corresponding to E is ti + qi + λv = tj + qj .

Case 4. If e is not in M or L, then the adjusted standard matching equation
corresponding to E is ti + qi = tj + qj .

Example 3.9. Finding the adjusted standard matching equations for the ex-
ample triangulation. We start by orienting the vertex link. With reference to
Figure 4 we will orient each triangle to have clockwise rotation. Recall the
meridian and longitude of the vertex link are [v0,0,1, e2,3,1,2, v2,3,2] and
[v0,0,1, e0,3,2,1, v0,3,1, e0,1,2,0, v0,1,0, e2,1,0,2, v2,1,2, e0,0,3,1, v0,0,1] respectively. We
will define the direction of the meridian and longitude to be in the forward di-
rection of the lists. The edge e2,3,1,2 in the meridian is not in the longitude. The
standard matching equation corresponding to e2,3,1,2 is t2,3+q2,03 = t3,0+q3,02.
Looking at Figure 4 we see t3,0 is on the left side, so the adjusted normal arc
equation is t3,0 + q3,02 + µ = t2,3 + q2,03. The standard matching equations for
each of the longitude edges are

t0,3 + q0,03 = t1,3 + q1,03

t0,1 + q0,02 = t3,1 + q3,02

t2,1 + q2,01 = t3,3 + q3,01

t0,0 + q0,02 = t1,0 + q1,03

respectively. Note that each edge in the longitude belongs to the longitude and
not the meridian. By inspection of Figure 4 we determine the left sides of the
edges and get the corresponding adjusted standard matching equations as

t1,3 + q1,03 + λ = t0,3 + q0,03

t3,1 + q3,02 + λ = t0,1 + q0,02

t3,3 + q3,01 + λ = t2,1 + q2,01

t1,0 + q1,03 + λ = t0,0 + q0,02

Each standard matching equation not corresponding to a meridian or longitude
edge remains unchanged in the adjusted standard matching equations.
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4 The main algorithm

Example 4.1. Computing a retracted spun normal surface solution for the
example triangulation. We will compute the retracted spun normal surface
solution for the Q-matching solution from Example 2.15. Recall

Sq = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0)

First we apply the modified Burton’s method (Algorithm 1) and find that Sq cor-
responds to a spun normal surface which is not a normal surface. Next we find a
meridian and longitude of the vertex link. Recall we found [v0,0,1, e2,3,1,2, v2,3,2]
and [v0,0,1, e0,3,2,1, v0,3,1, e0,1,2,0, v0,1,0, e2,1,0,2, v2,1,2, e0,0,3,1, v0,0,1] as a meridian
and longitude respectively. Next we want to determine the triangle coordinates.
Unglue the vertex link along the meridian and longitude and perform the modi-
fied Burton’s method to determine the triangle coordinates. Note that since the
vertex link is still connected after ungluing along the meridian and longitude,
each triangle coordinate is determined. The complete disk coordinate vector is
then

Sd = (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0)

We now can determine µ and λ from adjusted standard matching equations.
For µ we have

t3,0 + q3,02 + µ = t2,3 + q2,03

1 + 1 + µ = 0 + 0

µ = −2

For λ we have
t1,3 + q1,03 + λ = t0,3 + q0,03

0 + 1 + λ = 0 + 0

λ = −1

We now have the retracted spun normal surface solution [Sd, µ, λ,M,L].

20



Algorithm 5 The main algorithm

Input: A triangulation T with t tetrahedra, a solution q ∈ R3t to the Q-
matching equations for T , a complete peripheral system Γ determined by
applying Algorithms 2 and 3 to each vertex link. (The starting vertex for
each vertex link will be the lexicographically smallest vertex in that link.)
Using Burton’s method (Algorithm 1) Attempt to find a solution S to the

standard matching equations with quadrilateral coordinates equal those
of q.

if We have found a solution to the standard matching equations then
return S

end if
At this point we know q corresponds to a spun normal surface and not a

normal surface.
Use a modified version Algorithm 1 which removes the standard matching

equations corresponding to the normal arcs in Mv and Lv to compute the
disk coordinates, Sd.

Let Sµ and Sλ be empty arrays.
for each vertex v in T do

Let Lv be the vertex link of v.
Let Mv and Lv be the meridian and longitude of Lv in Γ.
Use a modified standard matching equation corresponding to an edge in

Lv which in not in Mv (see Proposition 1) to compute λv.
Use a modified standard matching equation corresponding to an edge in

Mv to compute µv.
Append Sµ and Sλ by µv and λv respectively.

end for
return [Sd, Sµ, Sλ,Γ]
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5 The algorithms for Euler characteristic, bound-
ary slopes, connectedness, and orientability

Given we have computed a retracted spun normal surface, it is of interest to
know some additional properties of the surface and of its boundary components.
Here we provide algorithms for computing the Euler characteristic of the surface
and boundary slopes of the boundaries.

6 The Main Results

Definition 6.1. (Connected Component) Let T be a triangulation and S be
a spun normal surface in T . Let C be a collection of disks in S such that for
each pair of disk d1, d2 in C there exists a path of finite length through adjacent
disks (disks sharing and edge) in S from d1 to d2 and there does not exist a
finite path from any disk d in C to a disk d′ in S not in C. Then we say C is a
connected component of S.

Theorem 6.2. Given a triangulation T with a complete peripheral system Γ and
a solution S to the Q-matching equations (for T ), there exists a description of
a retracted spun normal surface solution with the same quadrilateral coordinates
as S.

Proof of Theorem 6.2. A solution S to the Q matching equations corresponds
to a normal surface or a spun normal surface. Consider the following cases.

Case 1. S carries the quadrilateral coordinates of a (closed) normal surface.
Burton’s Method [1] (see also Algorithm 1) gives a complete and unique descrip-
tion of normal surface solution, which is also a retracted spun normal surface
solution with meridian and longitude coordinates set to zero.

Case 2. S does not give not the quadrilateral coordinates of a (closed) normal
surface. Then S carries the quadrilateral coordinates of a spun normal surface
P . We will show the existence of a retracted spun normal surface solution by
showing the existence of the coordinates for each connected component of P ,
and adding them together. Let n be the number of vertex classes in T . Denote
the meridian and longitude of vertex class i in Γ as Mi and Λi respectively. Let
C be a connected component P .

Subcase (a) The component C is finite. Then C is a (closed) normal sur-
face by definition. The triangle coordinates of C can be determined counting.

Subcase (b) The component C is not finite. Then a finite connected subset
of C containing all quadrilateral disks can be created by cutting along each Mi

and Λi some number of times (possibly zero). To show this, consider performing
a breath first search through the disks making up C starting at a quadrilateral
disk in C. We know a quadrilateral disk exists since if not, C would be a
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Algorithm 6 Euler Characteristic

Input: A triangulation T , and a retracted spun normal surface solution S′. Let
Γ be the complete peripheral system of curves used to compute S′.
Sum the triangular and quadrilateral coordinates of S′, call the sum F .
F now represents the number of faces in S′

Initialize E to zero.
Let sd be the disk coordinate vector in S′

for Each each coordinate i of sd do
if i corresponds to a triangle disk type then

Add 3sd[i] to E
else if i corresponds to a quadrilateral disk type then

Add 4sd[i] to E
end if

end for
for Each vertex link L in T do

Let M be the meridian for L in Γ
Let Λ be the longitude for L in Γ
Let µ be the coordinate in S′ corresponding to M
Let λ be the coordinate in S′ corresponding to Λ
Let eM be the number of edges in M
Let eΛ be the number of edges in Λ
Add µeM to E
Add λeΛ to E

end for
Divide E by two.
E is now the number of edges in S′.
For each edge class e in T let d(e) denote the number of tetrahedra in T with

an edge in the edge class e.
Initialize V to zero
for Each coordinate i of sd do

Let D be the disk type corresponding to i.
for Each vertex v in D do

Let e be the edge class in T corresponding to v
Add 1

d(e) to V

end for
end for
for Each vertex link L in T do

Let M be the meridian for L in Γ
Let Λ be the longitude for L in Γ
Let µ be the coordinate in S′ corresponding to M
Let λ be the coordinate in S′ corresponding to Λ
for Each vertex v in M do

Let d′(v) be the number of disk on the opposite of M as the boundary
which contain v

Add d′(v)
d(v) to V

end for
for Each vertex v in Λ do

Let d′(v) be the number of disk on the opposite of Λ as the boundary
which contain v

Add d′(v)
d(v) to V

end for
end for
Now V is the number of vertices in S′

return V − E + F
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Algorithm 7 Boundary Slope

Input: A retracted spun normal surface solution R′.
Let b be an empty list.
for each pair of meridian and longitude coordinates µ, λ in R′ do

Append µ
λ to b

end for
return b

vertex linking surface which is finite, a contradiction. Since there are finitely
many quadrilateral disks, and C is a connected component, we will reach each
quadrilateral disk in finitely many steps. Call the surface composed of the disks
searched C ′. Note that every disk in C not in C ′ is a triangular disk and belongs
a vertex link. Continue the breath first search outward from C ′. If a disk edge
with an arc type in Γ is found do not add the adjacent disk to the head of the
breath first search. Since each vertex link is finite in size and there are finitely
many vertex links, this search will terminate in finitely many steps. Call the
surface created through this extended breath first search C ′′. Since each bound-
ary edge of C ′′ belongs to a peripheral curve in Γ, each boundary curve in C ′′

is a boundary curve in Γ. Each boundary curve in Γ is a meridian, a longitude,
or the union of a meridian and longitude of Γ. So C ′′ is a connected subset of
C containing all quadrilateral disks and can be created by cutting along each
Mi and Λi in Γ some number of times. The number of times a meridian M or
longitude Λ in Γ is cut along is the value of the corresponding coordinate for
the connected component C.

Since the disk and peripheral curve coordinates for each connected component
of P exist, the sum of those coordinates also exists. The sum of the coordinates
is a retracted spun normal surface solution of P , and a retracted spun normal
surface solution P ′, which has the same quadrilateral coordinates as S (and P ),
as desired.

Lemma 6.3. Let T be a triangulation Γ be a complete system of peripheral
curves and R′ be a retracted spun normal surface solution, then the coordinates
in R′ satisfy the adjusted standard matching equations.

Proof of Lemma 6.3. Let L be a vertex link of T and let M and L be the merid-
ian and longitude of L in Γ. Let µ and λ be the coordinates in R′ corresponding
to M and L respectively. Let e be an edge in M or L. Let ti and qi be the
disks on the left side of e and tj and qj be the disks on the right side of e (as set
by Definition 3.6). Let tnbi , qnbi , tnbj and qnbj denote the number of disks of type
ti, qi, tj , and qj in R′ which do not have a boundary on e respectively. Then
tnbi + qnbi = tnbj + qnbj . Let tbi , q

b
i , t

b
j and qbj denote the number of disks of type ti,

qi, tj , and qj in R which do have a boundary on e respectively. By definition,
µ and λ are the number of boundary components along the left side minus the
number on the right side of M and L respectively. Consider the following cases.
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Case 1 Edge e belongs to M and not L, then the number of boundary com-
ponents on the left side minus the number on the right side of e is µ and
tbi + qbi + µ = tbj + qbj

Case 2 Edge e belongs to L and not M , then the number of boundary com-
ponents on the left side minus the number on the right side of e is λ and
tbi + qbi + λ = tbj + qbj

Case 3 Edge e belongs to M and L, then the number of boundary compo-
nents on the left side minus the number on the right side of e is µ + λ and
tbi + qbi + µ+ λ = tbj + qbj

Theorem 6.4. Given a triangulation T with a complete peripheral system Γ
and a solution S to the Q-matching equations (for T ), Algorithm 5 promotes
S to a description of a retracted spun normal surface solution. Moreover, this
description is unique.

Proof of Theorem 6.4. A solution S to the Q matching equations corresponds
to a normal surface or a spun normal surface. Consider the following cases.

Case 1. S carries the quadrilateral coordinates of a (closed) normal surface.
This is Case 1 of the previous theorem which was shown to be unique.

Case 2. S does not give not the quadrilateral coordinates of a (closed) normal
surface. Then S carries the quadrilateral coordinates of a spun normal surface
P . By Theorem 6.2, we know there exists a retracted spun normal surface so-
lution P ′ that has the quadrilateral coordinates as P . Call one such solution
R′. Let v be an ideal vertex in T and L be the vertex link of v. Let M and L
be the meridian and longitude of L. Unglue L along M and L and denote the
result L′. Run the modified Burton’s method on vertex v, call the output B.
Since R′ exists, we know B is True with triangle coordinates consistent with
the matching equations of L′. Additionally, since the triangle coordinates are
unique, the disk coordinates in B must be equal to those in R′. There exists an
edge eL in L not in M . Let ti and tj be the normal triangles sharing edge eL.
Up to relabelling, let ti be on the left side of eL. Then the adjusted standard
matching equation corresponding to eL is ti + qi + λ = tj + qj . Since each disk
coordinate has been computed, λ is determined. Let eM be an edge in M . The
adjusted standard matching equation corresponding to eM is either of the form
tk + qk + µ+ λ = tm + qm or tk + qk + µ = tm + qm. In both cases µ is deter-
mined. By Lemma 6.3, a retracted spun normal surface solution must satisfy
the adjusted standard matching equations, and µ and λ are uniquely determined
by the disk coordinates. Since the disk coordinates are the same as in R′, µ
and λ must be the meridian and longitude coordinates corresponding to L in R′.

Since Algorithm 5 computes the triangle coordinates and the peripheral curve
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coordinates of R′ for any vertex link of T , it will do so for each vertex link of T .
So we can compute the retracted spun normal surface solution R′. Additionally,
since R′ was any retracted spun normal surface solution of T with quadrilat-
eral coordinates S and peripheral curves Γ, the retracted spun normal surface
solution R′ is unique with respect to T , S, and Γ.

Corollary 6.5. Given a triangulation T with a complete peripheral system Γ
and a solution S to the Q-matching equations, there exists an algorithm to com-
pute the Euler characteristic of S that is independent of the peripheral system
used and can be computed as in Algorithm 6.

Proof. First compute the retracted spun normal surface solution S′ from S us-
ing Algorithm 5.

Faces Since each face in S′ is a normal disk, we can compute the number
faces by summing the triangle and quadrilateral coordinates of S′.

Edges Each edge in the surface not on a boundary is an edge of exactly two
faces. Each edge in the surface on a boundary is an edge of exactly one face.
Let e = (3t+4q)/2 where t is the number of triangle disks and q is the number
of quadrilateral disks in S′. At this stage, each non boundary edge will have
been counted exactly once in e since it belongs to two faces and we have divided
by two. Each boundary edge is contributing 1

2 since it belongs two only one
face and we have divided by two. Let L be a vertex link of T and µ and λ be
the meridian and longitude coordinates for L. Then the number of edges in the
boundary component of L is µeµ+λeλ where eµ and eλ are the number of edges
in the meridian and longitude of L in Γ respectively. Then the total number of
edges in S′ is

E = (3t+ 4q)/2 +
∑
L∈T

(µeµ + λeλ)/2.

Vertices Similar to counting the edges, we will compute the number of ver-
tices if there was no boundary, then adjust for the boundary. For each edge e in
T compute the number of tetrahedra containing e, call this d(e). Each vertex v
in the surface S′ corresponds to an edge e in T , so we will denote d(v) = d(e).
Then if v is not a boundary vertex, d(v) will equal the number disks indecent to
v. Initialize V to zero. For each disk in S′ and for each vertex v in the disk add
1

d(v) to V . Now each non-boundary vertex in S′ is contributing exactly one to

V . Let v be a vertex on the boundary of S′. The count v was under counted due
to the disks missing on the opposite side of the boundary. Since the boundary
is on a vertex link, we can count the number of triangle disks in the vertex link
on the opposite side of the boundary, call it d′(v). For each boundary vertex v

add d′(v)
d(v) to V . Now each boundary vertex in contributing exactly one to V , so

V is the number of vertices in S′.
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To show that this result is independent of the peripheral curves in Γ, con-
sider two different choices for a peripheral curve in a vertex link L in T . These
two peripheral curves bound an annulus. Since the Euler characteristic of an
annulus is 0, this does not change the Euler characteristic of the surface. Since
swapping out a choice for any one of the peripheral curves does not effect the
Euler characteristic of the surface, the Euler characteristic of the surface is in-
dependent of the choice of peripheral curves. Algorithm 6 performs the above
calculations, and so it computes the Euler characteristic for a solution to the
Q-matching equations.

Definition 6.6. (Boundary Slope in a Vertex Link) Let T be a triangulation
with a complete peripheral system Γ and let R′ be a retracted spun normal
surface for T . Let L be a vertex link of T . Let µ and λ be the number
of meridians and longitudes of in R′ for L. Then the boundary slope of the
boundary in L (if it exists) is the pair ( µ

gcd(µ,λ) ,
λ

gcd(µ,λ) ). The multipliticy of

(µ, λ) in L is gcd(µ, λ). If R′ does not have boundary components in L we say
µ = λ = 0 and the multiplicity in L is 0.

Corollary 6.7. Given a triangulation T with a complete peripheral system Γ
and a solution S to the Q-matching equations which corresponds to an embedded
spun normal surface, there exists an algorithm to compute the boundary slopes
of S′ a retracted spun normal surface corresponding to S. Moreover, for each
vertex link L, the number of boundary components in L is the multiplicity and the
boundary slope is an embedded simple closed curve that is part of the boundary
of S′ implying Algorithm 7 computes this data.

Proof. By Theorem 6.4, we can promote S to a retracted spun normal surface
solution R′. Let L be a vertex link of T and let M and Λ be the meridian
and longitude of L in Γ. Let µ and λ be the coordinates in R′ for M and Λ
respectively. We will assume one of µ or λ is non-zero, as the statement trivially
holds otherwise.

First note, if the boundary intersects itself, then the spun normal surface
must intersect itself, which is a contradiction since the spun normal surface S
is embedded. Furthermore, the boundary is finite in length, and therefore the
boundary must be a closed curve. Thus, each boundary component must be
a simple closed curve which embeds in the torus by construction. Thus, each
boundary component is isotopic to p meridians and q longitudes where p and q
are relatively prime.

The boundary slope of the boundary in L is ( µ
gcd(µ,λ) ,

λ
gcd(µ,λ) ) and the num-

ber of boundary components in L is gcd(µ, λ). Since the boundary slope and
number of boundary components can be computed for the meridian and longi-
tude of any vertex link, they can be computed for each vertex link. Since the
boundary components of R′ only exist at the meridians and longitudes of Γ, the
boundary slopes for each boundary component in R′ and the total number of
boundary components can be computed from the data in Algorithm 7.
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Corollary 6.8. Let T be a triangulation and R′ be a retracted spun normal
surface solution for T . Algorithm 8 determines the orientability of R′.

Proof. Algorithm 8 constructs the retracted spun normal surface, then performs
a depth first search through the disks in the surface assigning orientations to
the arcs of the disks. If an inconsistency is found, then the algorithm returns
false. This is repeated for each connected component of the surface. If all arc
orientations are assigned without any inconsistencies then the algorithm returns
true.

Corollary 6.9. Let T be a triangulation and R′ be a retracted spun normal
surface solution for T . Algorithm 9 if R′ is connected.

Proof. Algorithm 9 constructs the retracted spun normal surface, then performs
a depth first search through the disks in the surface marking arcs as visited. If
all arc are visited after the first search the algorithm returns true, otherwise it
returns false.

Corollary 6.10. Let T be a triangulation with a complete peripheral system
Γ and R′ be a retracted spun normal surface solution for T . There exists an
algorithm to completely classify the surface.

Proof. The number of Euler characteristic, number of boundary components,
orientability, and connectness of R′ are determined by Corollaries 6.5, 6.7, 6.8,
and 6.9, respectively. Together this data completely determines the surface
[3].
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Algorithm 8 Determining orientability of a retracted spun normal surface

Input: A triangulation T and retracted spun normal surface solution R′ for T .
Let S be the normal disk solution vector in R′

Let diskStacks be an empty list
for each normal disk type d do

Let m be the value in S corresponding to d.
Create a stack of m disks and append it to diskStacks

end for
for each normal arc type in T do

Let b1, tStack1, and qStack1 be the number of boundary edges, triangle
disks, and quadrilateral disks on one side of the arc type.

Let b2, tStack2, and qStack2 be the number of boundary edges, triangle
disks, and quadrilateral disks on the other side of the arc type.

if neither the vertex cut off by the arc or the vertex missing from the face
in the gluing in tetrahedron 1 is 0 then
Reverse the order of qStack1

end if
if neither the vertex cut off by the arc or the vertex missing from the face

in the gluing in tetrahedron 2 is 0 then
Reverse the order of qStack2

end if
Create stack1 as the concatenation of b1, tStack1, and qStack1
Create stack2 as the concatenation of b2, tStack2, and qStack2
Note: Since the adjusted standard matching equations are satisfied by R′,

len(stack1) = len(stack2)
for i in range 0 to len(stack1) do

Glue the element at position i of stack1 to the element at position i of
stack2.

Initialize the orientation of the edge shared by the two elements with
orientation of 0 (indicating it is not yet oriented).

end for
end for
for Each stack s in diskStacks do

for Each disk d in s do
if d has an arc that is not oriented then

Set the arc orientation to 1
Perform a depth first search through the glued disks starting at d

setting arc orientations along the way and checking for consis-
tency with arcs already assigned.

During the depth first search:
When setting triangle arc orientations, set each arc in the triangle

with the same orientation.
When setting quadrilateral arc orientations, set the orientations of

each pair of arcs sharing a corner in the quadrilateral as the
negation of each other.

After the depth first search completes:
if an inconsistency is found then

return False
end if

end if
end for

end for
return True
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Algorithm 9 Determining connectedness of a retracted spun normal surface

Input: A triangulation T and retracted spun normal surface solution R′ for T .
Let S be the normal disk solution vector in R′

Let diskStacks be an empty list
for each normal disk type d do

Let m be the value in S corresponding to d.
Create a stack of m disks and append it to diskStacks

end for
for each normal arc type in T do

Let b1, tStack1, and qStack1 be the number of boundary edges, triangle
disks, and quadrilateral disks on one side of the arc type.

Let b2, tStack2, and qStack2 be the number of boundary edges, triangle
disks, and quadrilateral disks on the other side of the arc type.

if neither the vertex cut off by the arc or the vertex missing from the face
in the gluing in tetrahedron 1 is 0 then
Reverse the order of qStack1

end if
if neither the vertex cut off by the arc or the vertex missing from the face

in the gluing in tetrahedron 2 is 0 then
Reverse the order of qStack2

end if
Create stack1 as the concatenation of b1, tStack1, and qStack1
Create stack2 as the concatenation of b2, tStack2, and qStack2
Note: Since the adjusted standard matching equations are satisfied by R′,

len(stack1) = len(stack2)
for i in range 0 to len(stack1) do

Glue the element at position i of stack1 to the element at position i of
stack2.

Initialize the edge shared by the two elements as not visited.
end for

end for
Create a boolean variable oneDFSComplete and set it to False.
for Each stack s in diskStacks do

for Each disk d in s do
if d has an arc that has not been visited then

if oneDFSComplete then
return False

end if
Mark the arc as visited
Perform a depth first search through the glued disks starting at d

marking arcs as visited along the way
Set oneDFSComplete to True

end if
end for

end for
return True
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