extra problems for chapter 14 of *Statistical Thermodynamics* by Iwao Teraoka

6. The mean-field approximation was used in section 14.1.1 because of the difficulty of calculating Z, equation 14.1, exactly. This problem explores the difficulties by calculating Z exactly for a few particles on a small lattice. The seven-site lattice is drawn at right. Let $N_A=2$ and $N_B=5$.

1. Calculate the number of configurations. (Equation 14.6 works.)
2. Six-fold rotational symmetry of the lattice makes configurations degenerate. There is also non-symmetry degeneracy. All configurations have one of three energies. (Energy is E_k in equation 14.2). Let g_k be the degeneracy of E_k. By counting bonds, write formulas for E_1, E_2, and E_3. State the values of g_1, g_2, and g_3.
3. Let $\varepsilon_{AA}=\varepsilon_{BB}=0$. Write the formula for Z.
4. Evaluate Z at $\beta=1/\varepsilon_{AB}$.
5. The lattice has 12 bonds and 7 sites, so the average coordination number $\zeta=24/7$. Use that ζ to calculate the mean-field Z, equation 14.7. As before, let $\varepsilon_{AA}=\varepsilon_{BB}=0$ and $\beta=1/\varepsilon_{AB}$.
6. Calculate the percent difference between Z and the mean-field Z.

7. Mixing parameter χ is defined in equation 14.12; equation 14.15 shows χ in the Helmholtz free energy of mixing. Throughout this problem assume that ζ, ε_{AB}, ε_{AA}, and ε_{BB} are constant; they do not depend on temperature. Recall the thermodynamic relations

$$\Delta S = \left(\frac{\partial \Delta F}{\partial T}\right)_{N,V} \quad \text{and} \quad \Delta U = \left(\frac{\partial \Delta F}{\partial \frac{1}{T}}\right)_{N,V}.$$

1. Assuming that χ has only the T-dependence that is explicit in equation 14.12, is $\chi x_A x_B$ energetic or entropic?
2. Let $\chi = A + \frac{B}{T}$, where A and B are constants [Michael Rubinstein and Ralph Colby, *Polymer Physics*, Oxford U Press, 2003, equation 4.31]. Identify A as entropic or energetic. Likewise, B.
3. Here is a particular case: $A=-18.843$ and $B=8105$ K. [Lin and Huang, *Int. J. Pharmaceutics*, 2020, 399:109-115] In this case, does the energy of mixing, ΔU, favor mixing? Does the non-ideal part of the entropy of mixing, the entropic part of $N k_B \chi x_A x_B$, favor mixing?
8. Consider the role of lattice connectivity, ζ, in a mixture of A and B atoms on a lattice. There are two systems, system I and system II. Both have the same temperature. For both, \(N_B/N_A = 3 \). For both systems,
\[
\left[\epsilon_{AB} - \frac{1}{2}(\epsilon_{AA} + \epsilon_{BB}) \right] = \frac{3}{4} kT.
\]
For system I, ζ = 4. For system II, ζ = 6.
(1) Is system I stable, metastable, or unstable?
(2) Is system II stable, metastable, or unstable?

9. Consider the unequal-size binary liquid mixture that was analyzed in section 2 of chapter 10. \(N_B = 2 \) (there are two B-B molecules). \(N_A = 2 \).
The N=6 sites are evenly distributed on a sphere, as sketched at right. ζ = 4. Nearest-neighbor noncovalent interaction energies are, as usual, \(\epsilon_{AA} \), \(\epsilon_{AB} \), and \(\epsilon_{BB} \). For this problem do not use mean-field theory; use the actual numbers of possible arrangements and, for each arrangement, the number of A-A, A-B, and B-B noncovalent interactions. The numbers of arrangements are in the table.

<table>
<thead>
<tr>
<th>arrangement</th>
<th>two B²'s are</th>
<th>equatorial</th>
<th>non-equatorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of arrangements</td>
<td>6</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>number of non-covalent contacts</td>
<td>A-A</td>
<td>A-B</td>
<td>B-B</td>
</tr>
</tbody>
</table>

(1) Count the number of non-covalent interactions for the equatorial arrangement and for the non-equatorial arrangement. Write the interaction energy of each arrangement.
(2) Write the formula for the partition function \(Z \) in terms of \(\beta \) and the interaction energies.
(3) From \(Z \), derive a formula for the average energy, \(U \). \(U \) will depend on \(\beta \) (or \(kT \)) and the interaction energies. Note that \(U \), not \(\Delta U_{mix} \), is wanted.
10. Consider the mixture of N\textsubscript{A} A atoms and N\textsubscript{B} B\textsubscript{2} molecules. From equation 14.33, the free energy of mixing is as follows:

\[
\Delta F = Nk_B T \left[\frac{X_B}{2} \ln x_B + \left(1-x_B \right) \ln(1-x_B) + x_B (1-x_B) \right]
\]

Write N, x\textsubscript{B}, and (1-x\textsubscript{B}) in terms of N\textsubscript{A} and N\textsubscript{B}. Then derive the formula for \(\Delta \mu\) by applying the definition: \(\mu = \left(\frac{\partial F}{\partial N_A} \right)_{N_B,T}\). (Constant V is not indicated because lattice volume is not an independent variable.) \(\Delta \mu\) means the chemical potential of mixing, \(\mu - \mu^*\), where \(\mu^*\) is the chemical potential of A in pure liquid A, before mixing. The result should be as follows:

\[
\frac{\Delta \mu_A}{k_B T} = \frac{1}{2} x_B + \ln(1-x_B) + x_B^2
\]

11. Consider the mixture of N\textsubscript{A} A atoms and N\textsubscript{B} B\textsubscript{2} molecules. A is solvent, B is solute. The osmotic pressure is \(\Pi\). N is the number of lattice sites. V is volume and equals \(Nv_{site}\cdot \frac{\Pi V}{Nk_B T} = -\frac{\Delta \mu_A}{k_B T}\). The change in the chemical potential of A upon mixing is

\[
\Delta \mu_A = k_B T \left[\frac{1}{2} x_B + \ln(1-x_B) + x_B^2 \right]
\]

The osmotic virial series is

\[
\frac{\Pi V}{Nk_B T} = \frac{1}{2} x_B + B_2 x_B^2 + B_3 x_B^3 + \cdots
\]

where \(B_2\) and \(B_3\) are the second and third osmotic virial coefficients.

1. Expand \(\Delta \mu_A\) in a power series in \(x_B\), keeping terms to order \(x_B^3\).
2. By comparing, write formulas for the second osmotic virial coefficient, \(B_2\), and the third osmotic virial coefficient, \(B_3\).
3. At the "theta" condition, \(B_2 = 0\). What value of \(\chi\) corresponds to the theta condition?