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refrontal Mechanisms in Extinction
f Conditioned Fear

regory J. Quirk, René Garcia, and Francisco González-Lima

nterest in the medial prefrontal cortex (mPFC) as a source of behavioral inhibition has increased with the mounting evidence for a
unctional role of the mPFC in extinction of conditioned fear. In fear extinction, a tone-conditioned stimulus (CS) previously paired
ith a footshock is presented repeatedly in the absence of footshock, causing fear responses to diminish. Here, we review converging

vidence from different laboratories implicating the mPFC in memory circuits for fear extinction: (1) lesions of mPFC impair recall
f extinction under various conditions, (2) extinction potentiates mPFC physiological responses to the CS, (3) mPFC potentiation is
orrelated with extinction behavior, and (4) stimulation of mPFC strengthens extinction memory. These findings support Pavlov’s
riginal notion that extinction is new learning, rather than erasure of conditioning. In people suffering from posttraumatic stress
isorder (PTSD), homologous areas of ventral mPFC show morphological and functional abnormalities, suggesting that extinction

ircuits are compromised in PTSD. Strategies for augmenting prefrontal function for clinical benefit are discussed.
ey Words: Amygdala, infralimbic, long-term potentiation, prelim-
ic, PTSD

he study of fear and anxiety in experimental animals has
advanced rapidly with the use of Pavlovian fear condition-
ing, in which a tone-conditioned stimulus (CS) is associ-

ted with a footshock unconditioned stimulus (US). Conditioned
ear reactions to the tone extinguish in the absence of the shock.
he resurgence of interest in extinction is due in large part to its
otential applicability to the treatment of anxiety disorders, such
s posttraumatic stress disorder (PTSD), in which extinction is
hought to be compromised. A thorough understanding of the
eural circuits of extinction of fear could yield new treatments for
ugmenting exposure-based therapies that are used to treat
TSD (Anderson et al 2004; Ressler et al 2004).

In his classic investigation of appetitive conditioning in dogs,
avlov observed that extinguished responses spontaneously
ecovered with the passage of time (Pavlov 1927). This suggested
hat extinction did not erase the memory for conditioning but
epresented new learning. More recent behavioral studies have
onfirmed and extended this finding for conditioned fear (Bou-
on 2002; Quirk 2002; Rescorla 2004; Rescorla and Heth 1975). If
xtinction does not erase the conditioning memory, it must form
new memory that inhibits the conditioned response. This

uggests that some structure or structures are activated by
xtinction, so as to excite inhibitory circuits that are responsible
or reducing the expression of fear (Figure 1). Despite early
heoretical formulations of extinction-related inhibition (Konor-
ki 1967; Pavlov 1927), the search for inhibitory circuits largely
as been unsuccessful (Chan et al 2001; Kimble and Kimble
970). However, studies that build on recent advances in the
cquisition of conditioned fear point to the medial prefrontal
ortex (mPFC) as an important part of the neural circuit for fear
xtinction. In this review, we describe converging evidence from
esion, recording, metabolic, stimulation, and microinfusion studies
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in rodents supporting this hypothesis. We also suggest ways in
which prefrontal mechanisms of extinction may be augmented
so as to enhance extinction, with potential clinical applications.

Lesion Studies

The idea that extinction circuits involved the prefrontal cortex
originated with early primate studies of appetitive conditioning,
in which lesions of the ventral mPFC (vmPFC) and orbitofrontal
cortex resulted in increased responding during extinction (Butter
et al 1963; for a complete history of prefrontal cortex in extinc-
tion, see Sotres-Bayon et al 2006, in this issue). Later, Morgan and
colleagues (Morgan et al 1993; Morgan and LeDoux 1995)
observed that rats with vmPFC lesions could acquire fear nor-
mally but had difficulty extinguishing across several days of
extinction training. Quirk and colleagues (2000) then showed
that rats with vmPFC lesions that were centered on the infralim-
bic cortex (IL) could extinguish normally within a session but
had difficulty recalling extinction 24 hours later, suggesting that
IL is not required for fear inhibition under all circumstances but
is important for recalling extinction after a long delay. Other
studies have confirmed that vmPFC lesions impair recall of
extinction in aversive (Lebron et al 2004; Morgan et al 2003;
Morrow et al 1999; Weible et al 2000) and appetitive (Rhodes and
Killcross 2004) conditioning.

Recording Studies

Lesion studies presuppose that regional contributions to brain
function may be inferred from a damaged brain. A more direct
approach is to record from neuronal activity in awake animals
undergoing extinction training. Do mPFC neurons signal extinction?
Paralleling mPFC lesion findings, single neurons in IL did not signal
the tone CS during acquisition or extinction training (Milad and
Quirk 2002). The next day, however, when rats were recalling
extinction, IL units showed potentiation of short-latency tone re-
sponses (Figure 2). The larger the tone response, the lower the
spontaneous recovery of freezing, consistent with IL-mediated
inhibition of fear after extinction. No such potentiation was ob-
served in adjacent prelimbic cortex. Thus, extinction potentiated
auditory inputs to IL neurons, providing direct support for the
Pavlov-Konorski hypothesis that extinction potentiates neuronal
activity in structures that are involved in inhibition of the condi-
tioned response (Konorski 1967; Pavlov 1927).

What inputs to mPFC might become potentiated as a result of
extinction? To address this, Garcia and colleagues determined

whether repeated presentations of a tone CS in the absence of

BIOL PSYCHIATRY 2006;60:337–343
© 2006 Society of Biological Psychiatry



t
m
a
1
H
L
M
p
t
m
i
G
h
e
a
t
r
2
i
r
m
t
b

s
h
l
2
i
t
a
a
t
o
m

M

e
w
f
r
b
(
o
b

F
t
n
c
t
n
f

338 BIOL PSYCHIATRY 2006;60:337–343 G.J. Quirk et al

w

he US induces long-term potentiation (LTP) in the mPFC. The
PFC receives glutamatergic inputs from the hippocampus (Jay

nd Witter 1991), the mediodorsal thalamus (MD; Pirot et al
994), and the basolateral amygdala (BLA; McDonald 1991).
igh-frequency stimulation of each of these input areas results in
TP in mPFC-evoked potentials (Herry et al 1999; Jay et al 1995;
aroun and Richter-Levin 2003). So far, analyses of two of these
athways have confirmed development of LTP-like changes in
he mPFC with extinction training. MD-evoked responses in
PFC show little change during extinction training but are

ncreased 1–7 days after extinction (Herry et al 1999; Herry and
arcia 2002). Similarly, extinction-related LTP takes place in the
ippocampal–mPFC pathway after extinction training (Farinelli
t al, in press). Interestingly, failure to recall extinction was
ssociated with inhibition of MD-evoked potentials, and depressing
he MD-mPFC pathway with low-frequency stimulation caused full
ecovery of conditioned fear after extinction (Herry and Garcia
002, 2003). Thus, extinction training results in LTP of thalamic
nputs to mPFC even days after extinction, paralleling the single-unit
ecording studies (Milad and Quirk 2002) and indicating a role of
PFC in long-term retention of extinction memory. Thus, inputs to

he mPFC from the thalamus, hippocampus, or the BLA may
ecome potentiated after extinction.

Microinfusion data have strongly implicated the BLA in acqui-
ition of extinction (Lin et al 2003; Myers and Davis 2002);
owever, lesions of the basal nucleus have no effect on short- or
ong-term memory for extinction (Anglada-Figueroa and Quirk
005; Sotres-Bayon et al 2004). This highlights the potential
mportance of the lateral amygdala in the acquisition of extinc-
ion. Another potentially important input to mPFC is the auditory
ssociation cortex (Condé et al 1995), in light of reports that
uditory-cortex lesions impair extinction of auditory fear condi-
ioning (Song and Kim 2004; Teich et al 1989). Local inactivation
f various inputs to mPFC is needed to determine which ones
ay impair extinction learning and memory.

etabolic Mapping

In addition to single-unit and evoked potential recording,
xtinction of auditory conditioning also has been investigated
ith metabolic-mapping techniques that assess the uptake of

luorodeoxyglucose (FDG), a radiolabeled glucose analog (Bar-
ett et al 2003). Brain activity can be mapped with FDG because
rain cells use glucose and its analogs for energy metabolism
Sokoloff 1992). An important advantage of metabolic mapping
ver electrophysiological recording methods is that the entire

Conditioned behav ior

Conditioning memory
Extinction memory

Conditioning Extinction

igure 1. Schematic relating conditioned behavior to memory for condi-
ioning and extinction. As first suggested by Pavlov, extinction training does
ot eliminate memory for conditioning but generates a new memory that
ompetes with conditioning for control of behavior. For conditioned fear,
his schema suggests that there are structures in the brain that increase their
euronal activity with extinction, so as to drive down fear via inhibition of

ear expression centers.
rain can be examined at once, permitting visualization of

ww.sobp.org/journal
behavioral networks. Metabolic responses to a test tone were
compared in groups of mice that received fear conditioning, a
pseudorandom treatment (unpaired tones and shocks), or con-
ditioning followed by extinction. Consistent with single-unit and
evoked-potential recording, the largest increase in metabolic activity
after extinction occurred in the mPFC. The infralimbic (but not the
prelimbic) area showed significantly more metabolic activity than
controls. In addition to IL, significant metabolic increases were
observed in dorsal, medial, and lateral frontal cortex, which are
areas not yet studied with the unit-recording technique. Hence,
multiple prefrontal regions may play a role in extinction memory.
There also were changes in the interaction between the prefron-
tal cortex and other regions, particularly in auditory and limbic
networks. In support of an inhibitory role, FDG labeling in
dmPFC, in IL cortex, and in dorsal and lateral frontal cortex was
correlated significantly with extinction behavior (Barrett et al
2003). Finally, there was a strong negative correlation between
prefrontal areas and regions thought to be involved in expression
of conditioned fear, such as the ventral tegmental area, MD
thalamus, and the entire auditory system (brainstem, thalamic,
and cortical levels; Barrett et al 2003).

These mapping data suggest that extinction training engages
a network of interactive brain regions, which may serve two
functions: to inhibit the conditioned response after extinction
and to preserve some of the original CS-US associative effects

Figure 2. Converging lines of evidence showing that the infralimbic pre-
frontal cortex (IL) is functionally involved in recall of extinction. (A) Lesions of
IL do not prevent extinction but interfere with recall of extinction the follow-
ing day (modified from Quirk et al 2000). (B) Unit recording shows that IL
neurons respond to the tone only during recall of extinction, suggesting
that IL tone responses are responsible for low fear after extinction (modified
from Milad and Quirk, 2002). (C) Infusing the protein synthesis inhibitor
anisomycin (Aniso) into the IL just before extinction (arrow) has no effect on
extinction learning but blocked recall of extinction the following day (mod-
ified from Santini et al 2004). These and other data suggest that extinction-
induced potentiation of prefrontal neuronal activity is necessary for sup-
pression of fear after extinction. vmPFC, ventral medial prefrontal cortex;

Habit., habituation; Cond., conditioning.



f
t
t
i
(
t
a

M

u
c
a
i
c
b
1
a
f
a
i

a
(
(
p
w
i
w
e
i
a
a
d
n
h
e

g
i
w
e
2
o
m
w
a

T
C

S
F
M

G.J. Quirk et al BIOL PSYCHIATRY 2006;60:337–343 339
rom acquisition. Thus, there is remarkable convergence be-
ween the three different techniques (single-unit, evoked poten-
ial, metabolic mapping) in two species (rat and mouse), show-
ng that extinction potentiates vmPFC responses to the tone CS
Table 1). These results clearly support Pavlov’s cortical inhibi-
ion hypothesis and contradict the simpler notions of extinction
s unlearning or reversal of acquisition.

olecular Studies

Formation of long-term memory has been linked to a molec-
lar cascade involving N-methyl-D-aspartate (NMDA)-mediated
alcium entry, activation of protein kinases, gene expression,
nd protein synthesis (Kandel 2001). Involvement of this cascade
n extinction would provide support for the idea that extinction
onstitutes new learning. It has been known for some time that
locking NMDA receptors systemically (Baker and Azorlosa
996; Cox and Westbrook 1994; Santini et al 2001) or within the
mygdala (Falls et al 1992; Walker and Davis 2002) prevents the
ormation of long-term memory for extinction. Protein kinases
nd protein synthesis in the amygdala also have been implicated
n extinction (Lin et al 2003; Lu et al 2001).

Recent evidence suggests that a similar molecular cascade oper-
tes in the mPFC during extinction. Antagonists of NMDA receptors
Burgos-Robles et al 2004), mitogen-activated protein kinases
MAPk; Hugues et al 2004), or protein synthesis (Santini et al 2004)
revent the formation of long-term (but not short-term) extinction
hen microinfused into the mPFC. In each case, delaying the

nfusion 2 or 4 hours after extinction eliminated the effect, consistent
ith a time-limited role of molecular processes in consolidation of
xtinction. Western blot analysis of prefrontal tissue shows that
nfusion of MAPk inhibitor PD098059 into the mPFC immediately
fter extinction decreased levels of phosphorylated ERK2 without
ffecting total ERKs (Hugues et al, in press). Future experiments will
etermine whether inhibition of extracellular signal-regulated ki-
ase-2 (ERK2) phosphorylation is related to LTP in the MD-mPFC or
ippocampal–mPFC pathways or to other inputs to the mPFC (for
xample, from the BLA; see Maroun and Richter-Levin, 2003).

Does activation of the ERK-MAPk system in the mPFC trigger
ene expression necessary for extinction memory? Although little
s known about extinction-induced gene expression, it recently
as shown that extinction training stimulates the immediate
arly gene c-Fos in the mPFC (Mickley et al 2005; Santini et al
004). Controls indicated that this up-regulation was not a result
f tone stimulation or acquisition of fear conditioning. c-Fos is a
arker of cellular activity but also can act as a transcription factor
hen dimerized with c-Jun (Kaczmarek 2002). These findings

able 1. Converging Lines of Evidence from Recent Rodent Studies Showin
ortex (mPFC)

MPFC Activity is Enhanced by
Extinction Training

MPFC Activit
Extinc

ingle-unit responses to CSa Single-unit response
ield potentials evoked by thalamic stimulationb Field potentials evok
etabolic activity to CSc Metabolic activity to

CS, conditioned stimulus.
aMilad and Quirk (2002).
bHerry and Garcia (1999).
cBarrett et al (2003).
dHerry and Garcia (2002).
eMilad et al (2004).
fGonzalez-Lima and Bruchey (2004).
re consistent with a role of gene expression in extinction
memory, although transcription inhibitors and transgenic ap-
proaches will be needed to determine whether gene expression
is necessary for extinction memory.

Expression of Extinction

Once potentiated, how does mPFC inhibit fear after extinc-
tion? The infralimbic subregion of mPFC has extensive projec-
tions to the amygdala, as well as the amygdala’s targets in the
hypothalamus and brainstem (Floyd et al 2001; Hurley et al 1991;
Vertes 2004). If these projections are inhibitory, the IL could
override amygdala-generated fear responses. The physiological
effect of many of these projections is not known, but anatomical
support exists for IL-mediated inhibition of the amygdala. IL
projects robustly to the region between the central and basolat-
eral nuclei, containing intercalated (ITC) cells (Cassell and
Wright 1986; McDonald et al 1996). ITC cells are gamma-amino-
n-butyric acid (GABA) ergic neurons (Paré and Smith 1993a) that
project to the central nucleus (Paré and Smith 1993b) and are
responsible for feed-forward inhibition of central nucleus output
neurons (Royer et al 1999). In support of this model, electrical
stimulation of the IL area decreased the excitability of brainstem-
projecting neurons of the amygdala central nucleus (Quirk et al
2003) and decreased the expression of conditioned fear (Milad et
al 2004). According to this model (Figure 3), extinction-induced
potentiation of tone responses in IL neurons would cause
feed-forward inhibition of the central nucleus, thereby prevent-
ing fear signals in BLA from exiting the amygdala. Consistent
with this, it recently was shown that chemical stimulation of IL

t Extinction can be Facilitated by Activation of Medial Prefrontal

orrelated with
ehavior

Increasing mPFC Activity
Strengthens Extinction

Sa Electrical stimulation paired with CSa,e

thalamic stimulationd Long-term potentiation of thalamic inputsd

Metabolic enhancement with methylene bluef

+

-

+

PFC

BLA

ITC

Ce

+

-

+

PFC

BLA

ITC

Ce

A.  Before Extinction B.  After Extinction

Fear Fear

Tone
Amygdala

Tone
Amygdala

Hippocampal,
thalamic, neocortical

Figure 3. Schema for mPFC inhibition of fear via the amygdala. (A) Before
extinction, the tone CS activates the basolateral amygdala (BLA), which
activates the central nucleus (Ce) output neurons, triggering fear responses.
(B) After extinction, prefrontal (PFC) responses to the tone are potentiated,
which activates GABAergic intercalated cells (ITC) within the amygdala. ITC
inhibition of the Ce competes with BLA excitation of Ce, effectively cancel-
ing fear responses. Potentiation of PFC responses to the CS and inhibition of
conditioned fear responses also may involve reciprocal PFC interactions
with hippocampal, thalamic, and neocortical pathways. Modified with per-
g tha

y Is C
tion B

s to C
ed by
CSc
mission from Milad et al (2004).
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ncreased c-Fos expression in amygdala ITC cells (Berretta et al
005). ITC cells also exhibit NMDA-mediated plasticity (Royer
nd Paré 2002), suggesting that they may participate in long-term
torage of extinction.

onflicting Lesion Evidence on the Role of the mPFC
n Extinction

Although there is much physiological evidence in favor of a
unctional role of mPFC in learning and expression of extinction,
here also are conflicting lesion reports. Two groups did not find
ny effect of pretraining mPFC lesions on extinction of condi-
ioned fear (Gewirtz et al 1997; Vouimba et al 2000), whereas
nother study found that lesions made after conditioning did not
mpair subsequent extinction (Morgan et al 2003). Interpretation
f permanent lesion effects often is hampered by potential
ecovery of function or compensation by other structures. There
s a pressing need, therefore, for studies that use temporary
nactivation of mPFC via microinfusion of local anesthetics or the
ABA antagonist muscimol. Preliminary reports using these

echniques are conflicting, showing increased fear (Corcoran and
aren 2003), decreased fear (Sierra-Mercado et al 2005), or no
ffect (Myers and Davis 2004) in rats recalling extinction. A
hallenge for future studies will be to identify the factors that
ould account for variability between laboratories. These might
nclude contextual variables (e.g., AAA vs. ABB designs), the
resence of a competing appetitive instrumental response (such
s bar-pressing for food), or the number of extinction trials (e.g.,
vertraining-induced masking of effects). Another possible rea-
on for negative lesion effects is that the mPFC likely is part of a
etwork of structures that collectively consolidate and express
xtinction memory (Barrett et al 2003). Disconnection of a
ufficient number of structures within the network may be a
rerequisite for observing lesion deficits. Finally, recent studies
how that mPFC neurons can signal acquisition of fear condi-
ioning (Baeg et al 2001; Laviolette et al 2005) and excite neurons
n the BLA (Likhtik et al 2005), suggesting that there may be
eparate modules within mPFC for exciting versus inhibiting fear.

nhancing Prefrontal Function Strengthens Extinction

If prefrontal activation is essential for extinction learning, then
timulating prefrontal cortex should strengthen extinction. Support
or this idea comes from experiments using electrical stimulation
nd metabolic enhancers. Electrical stimulation was used to mimic
hort-latency tone-evoked responses of infralimbic neurons (100–
00 ms after tone onset; Milad et al 2004; Milad and Quirk 2002).
airing this brief IL stimulation with conditioned tones reduced the
xpression of freezing, consistent with feed-forward inhibition of
mygdala output neurons (Quirk et al 2003). mPFC stimulation also
trengthened extinction learning as evidenced by persistent de-
reased fear responses the day after the stimulation, suggesting LTP
f extinction-related synapses in mPFC.

The role of LTP was tested directly by enhancing mPFC
esponsiveness to MD thalamic inputs by applying high-fre-
uency stimulation before extinction training (Herry and Garcia
002). MD stimulation had no effect on the rate of extinction
earning within the training session, supporting lesion and
nit-recording findings that mPFC is not responsible for short-
erm extinction memory. One week later, however, retention of
xtinction was markedly improved in potentiated rats, as evi-
enced by low rates of spontaneous recovery of freezing.
mprovement in extinction retention was correlated with poten-

iation of mPFC evoked potentials. Thus, mPFC LTP prevented

ww.sobp.org/journal
the spontaneous recovery of conditioned freezing that normally
is observed with the passage of time.

An additional approach to enhancing mPFC function is the
use of metabolic enhancers such as methylene blue (MB), which
improve activity-dependent brain energy production by targeting
mitochondrial oxidative metabolism (Callaway et al 2002). A
memory-improving action of MB in rats first was demonstrated
for inhibitory avoidance learning (Martinez et al 1978). Gonzalez-
Lima and Bruchey (2004) investigated whether postextinction
administration of MB could enhance retention of an extinguished
conditioned response. Postextinction freezing was 50% lower in
rats that were receiving 4 mg/kg of MB, a dose that chronically is
used in human beings without negative side effects (Naylor et al
1986). Control rats injected with MB showed no changes in motor
activity or general fearfulness, suggesting that postextinction MB
administration specifically enhanced memory for extinction. Rats
with improved retention of extinction also showed a greater
relative increase in cytochrome oxidase activity in the same
prefrontal cortical regions that are activated during extinction
recall (Barrett et al 2003). Thus, MB improved extinction by
augmenting extinction-induced potentiation of mPFC. Note the
parallel with electrical stimulation and unit-recording findings
(Table 1). Conversely, decreases in cytochrome oxidase activity
in the prefrontal cortex produced by genetic selection of rats that
are predisposed to helplessness (Shumake et al 2000) results in
rats with deficits in fear extinction that simulate the PTSD
behavioral phenotype (Shumake et al 2005).

Relevance to Treatment of Psychiatric Disorders

There is great interest in finding more effective treatments for
anxiety disorders, which are among the most common mental
health problems. Extinction deficits have been implicated as a
possible risk factor for the development of PTSD (Charney 2004;
Lissek et al 2005; Milad et al 2005). People suffering from PTSD
show reduced extinction of aversively conditioned responses
(Charney et al 1993; Peri et al 2000) and show impairments in a
functional network involving the amygdala and anterior cingu-
late (Gilboa et al 2004; Shin et al 2001). Brain-imaging studies of
PTSD patients show reduced activity (Bremner 2002; Shin et al
2004) and reduced volume (Rauch et al 2003) in the perigenual
prefrontal cortex, an area that is homologous with extinction-
related regions of rodent mPFC (Milad et al 2006). These studies
also show increased amygdala activity in PTSD patients who are
exposed to traumatic stimuli (Bremner 2003; Shin et al 2004),
suggesting a lack of top-down control of the amygdala by
structures involved in extinction of fear.

Several recent functional imaging and volumetric studies dem-
onstrate that extinction activates perigenual and associated regions
of prefrontal cortex in human beings (Gottfried and Dolan 2004;
Milad et al 2005; Phelps et al 2004). In particular, Rauch and
coworkers demonstrated that retention of fear extinction was cor-
related with the thickness of the vmPFC (Milad et al 2005), suggest-
ing that the likelihood of developing PTSD depends on the integrity
of the prefrontal extinction system. For a complete review of the
human literature on extinction, see Rauch et al (2006, in this issue).

Behavioral therapy for PTSD (exposure therapy) is based
mainly on the process of extinction (Hermans et al 2005).
Therefore, methods of facilitating extinction and preventing the
return of fear may lead to more effective therapeutic interven-
tions. Current behavioral techniques such as flooding and implo-
sion could be improved by pharmacological interventions that

accelerate and strengthen extinction. For example, a reduction in
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he number of exposure sessions required to successfully extin-
uish fear responses could counteract the relatively high dropout
ate that is observed with this type of therapy (van Minnen and
agenaars 2002).
Several recent studies have shown that extinction learning in

ats can be accelerated and strengthened with systemically
pplied drugs. These include the noradrenergic antagonist yo-
imbine (Cain et al 2004), the dopamine D2 receptor antagonist
aclopride (Ponnusamy et al 2005), the cannabinoid reuptake
nhibitor AM404 (Chhatwal et al 2005), and the NMDA receptor
artial agonist D-cycloserine (DCS; Ledgerwood et al 2003;
alker et al 2002). With the exception of DCS, the locus of action

n the brain of these drugs is not yet known. On the basis of
revious work, however, modulation of dopaminergic and nor-
drenergic systems in the rat mPFC is likely to modulate the rate
f extinction (McCormick and Thompson 1982; Morrow et al
999). DCS has been shown to be effective when infused into the
LA (Walker et al 2002), and clinical studies show that adminis-

ering DCS to acrophobic subjects who are undergoing exposure
herapy improves the effectiveness of the therapy (Ressler et al
004). However, there are some limitations to this approach, such
s CS nonspecificity and tolerance to repeated DCS (Ledgerwood et
l 2005; Parnas et al 2005). An alternative approach would be to use
he metabolic enhancer MB (Riha et al 2005). A metabolic approach
iffers from the transmitter-receptor approach because it is not
elective for a single transmitter system or brain region but targets all
he synapses that require increased energy during postextinction
emory consolidation, such as in the various prefrontal cortex

egions (Gonzalez-Lima and Bruchey, 2004). Other approaches to
ctivating mPFC during exposure therapy could include repetitive
ranscranial magnetic stimulation (Cohen et al 2004), deep brain
timulation (Abelson et al 2005), or even meditation (Lazar et al
000). Thus, prefrontal activation achieved pharmacologically,
hysiologically, or psychologically could serve as a useful adjunct to
xposure therapy by strengthening memory for the extinction
safety) experience.

This work was supported by NIH grants: R01-MH58883,
06-GM08239, and R21-MH072156 (to GJQ), the Philippe Foun-
ation (to RG), and NIH grant R01-NS37755 (to FGL).

Aspects of this work were presented at the conference “Extinc-
ion: The Neural Mechanisms of Behavior Change”, February
–6, 2005 in Ponce, Puerto Rico. The Conference was sponsored
y the National Institute of Mental Health, National Institute on
rug Abuse, Ponce School of Medicine, University of Puerto Rico
enters of Biomedical Research Excellence (COBRE) Program,
fizer Global Pharmaceutical, and the Municipality of Ponce.
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