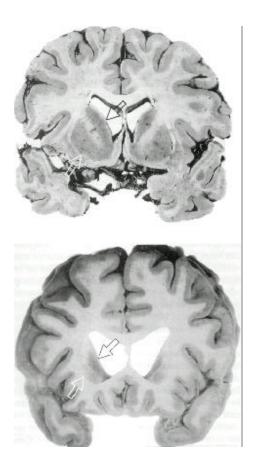
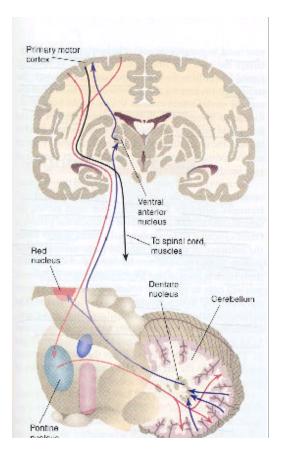
The Basal Ganglia

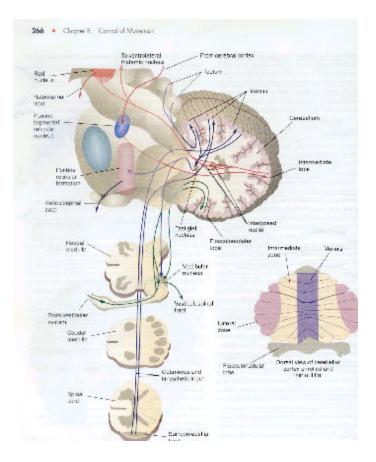
- Basal ganglia consist of the caudate nucleus, the putamen and the globus pallidus
 - Input to the basal ganglia is from the primary motor cortex and the substantia nigra
 - Output of the basal ganglia is to
 - Primary motor cortex, supplemental motor area, premotor cortex
 - Brainstem motor nuclei (ventromedial pathways)
 - Cortical-basal ganglia loop
 - Frontal, parietal, temporal cortex send axons to caudate/putamen
 - Caudate/putamen projects to the globus pallidus
 - Globus pallidus projects back to motor cortex via thalamic nuclei


8.2

Parkinson's Disease

- Parkinson's disease (PD) involves muscle rigidity, resting tremor, slow movements
 - Parkinson's results from damage to dopamine neurons within the nigrostriatal bundle (projects to caudate and putamen)
 - Slow movements and postural problems result from
 - Loss of excitatory input to the direct circuit (caudate-Gpi-VA/VL thalamus-motor cortex)
 - Loss of output from the indirect circuit (which is overall an excitatory circuit for motor behavior)
 - Neurological treatments for PD:
 - Transplants of dopamine-secreting neurons (fetal subtantia nigra cells or cells from the carotid body)
 - Stereotaxic lesions of the globus pallidus (internal division) alleviates some symptoms of Parkinson's disease


Huntington's Disease


- Huntington's disease (HD) involves uncontrollable, jerky movements of the limbs
 - HD is caused by degeneration of the caudate nucleus and putamen
 - Cell loss involves GABA-secreting axons that innervate the external division of the globus pallidus (GPe)
 - The GPe cells increase their activity, which inhibits the activity of the subthalamic nucleus, which reduces the activity level of the GPi, resulting in excessive movements
- HD is a hereditary disorder caused by a dominant gene on chromosome 4
 - This gene produces a faulty version of the protein <u>huntingtin</u>

The Cerebellum

- Cerebellum consists of two hemispheres with associated deep nuclei
 - <u>Flocculonodular lobe</u> is located at the caudal aspect of the cerebellum
 - This lobe has inputs and outputs to the vestibular system
 - Involved in control of posture
 - <u>Vermis</u> is located on the midline of the cerebellum
 - Receives auditory and visual information from the tectum and cutaneous information from the spinal cord
 - Vermis projects to the fastigial nucleus which in turn projects to the vestibular nucleus and to brainstem motor nuclei
- Damage to the cerebellum generally results in jerky, erratic and uncoordinated movements

