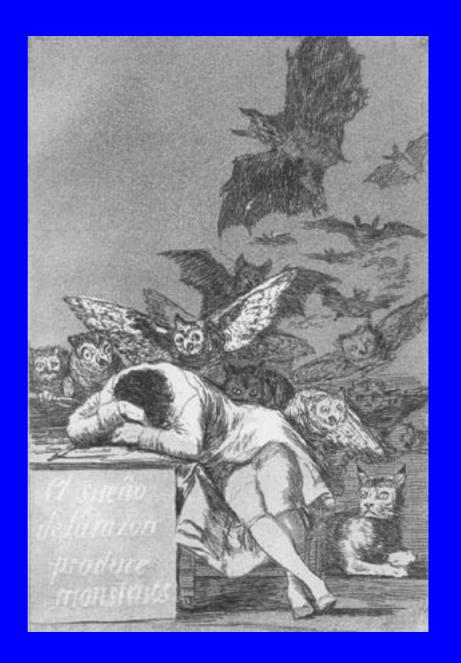
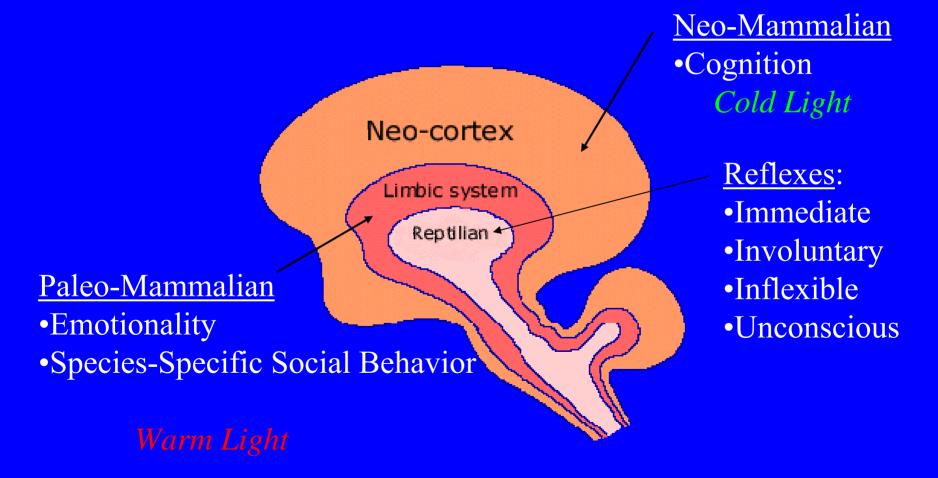
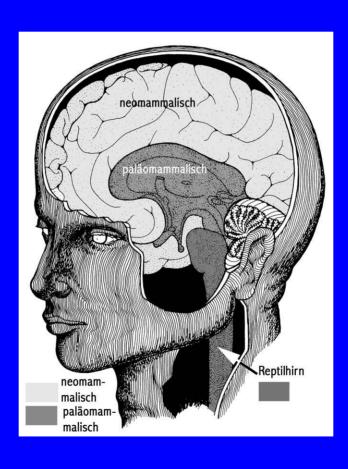
Francisco de Goya

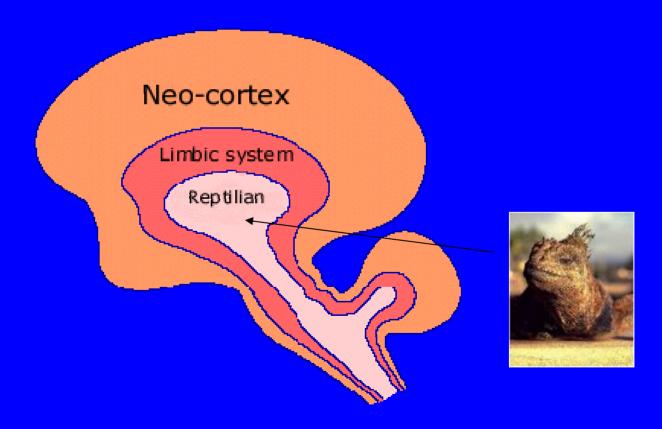
The Sleep of Reason
Produces Monsters

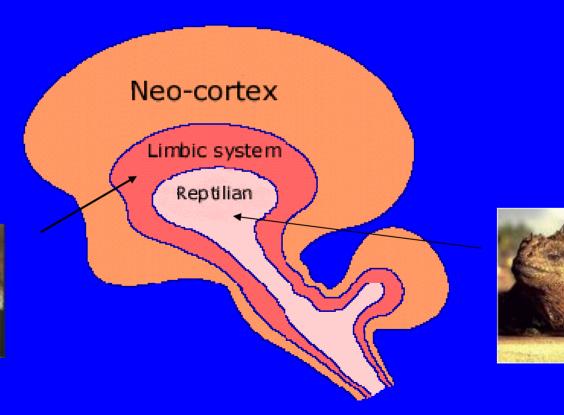
El sueno de la razon produce monstruos, 1799

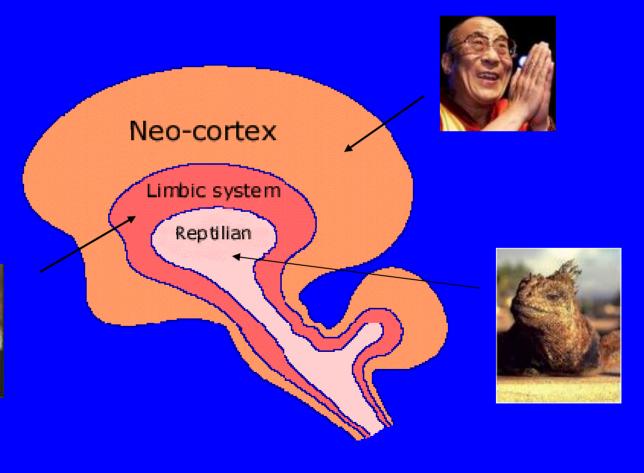


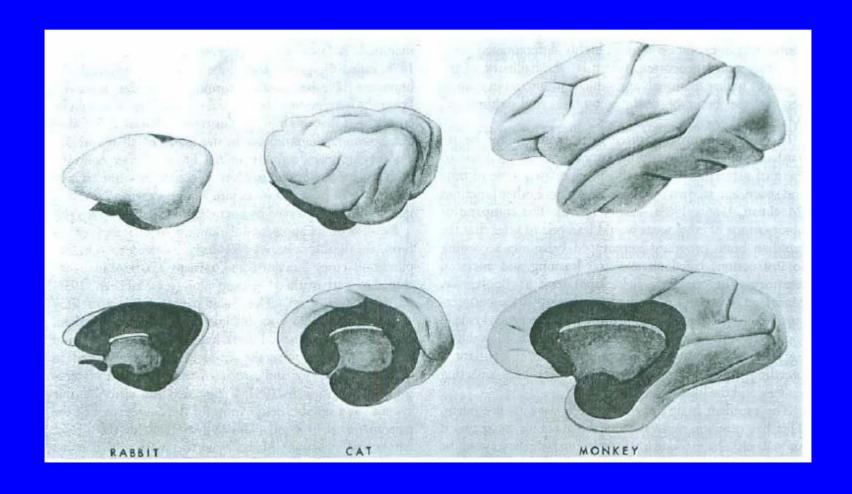

Francisco de Goya

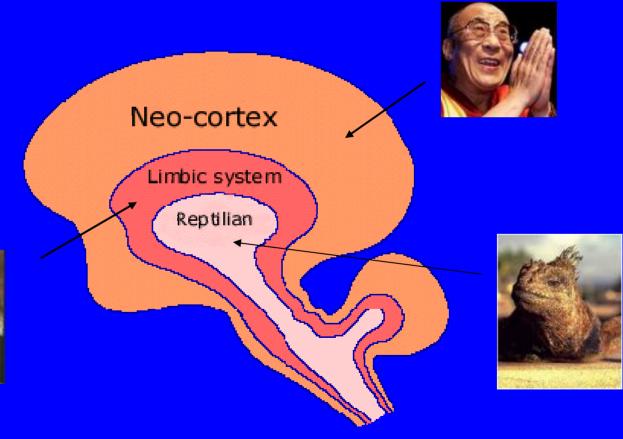

The Sleep of Reason Produces Monsters


El sueno de la razon produce monstruos, 1799

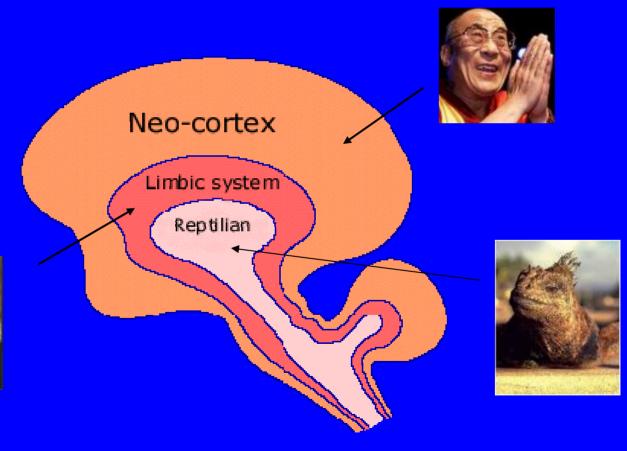

- •Evolution & Organization of the Human Brain
- •Biological underpinnings of PTSD (?)



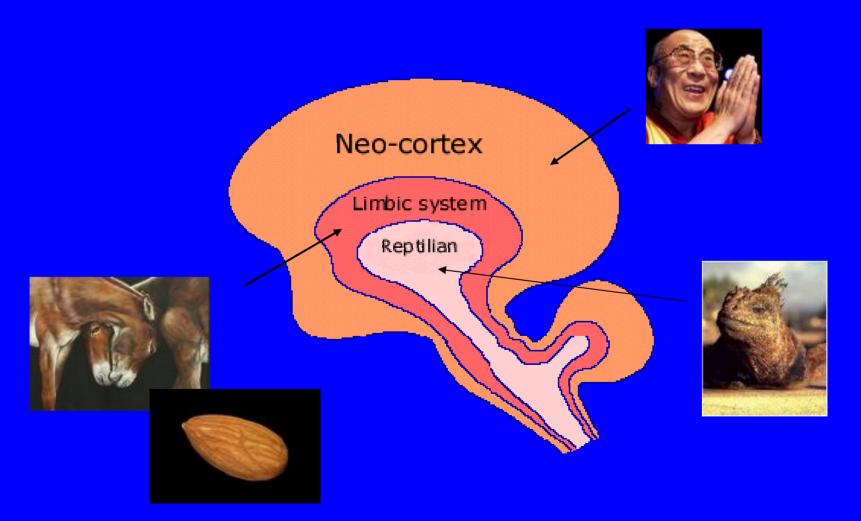




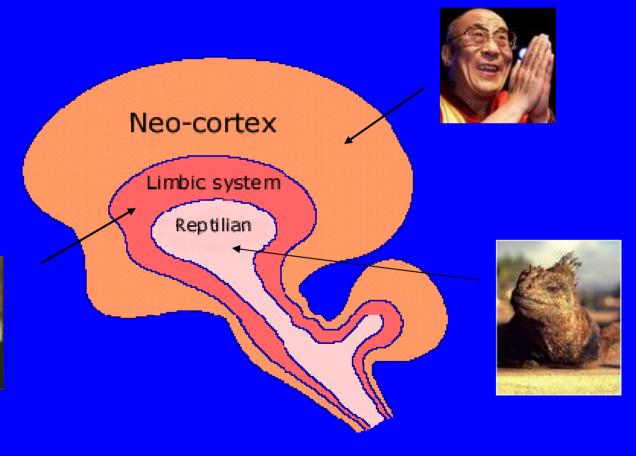
Man: More Lama Less Mule



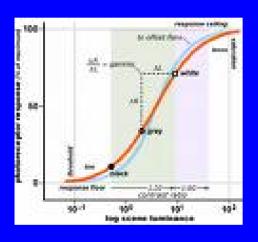
Stimuli Entering the Brain: Evoke all 3 Response Propensities

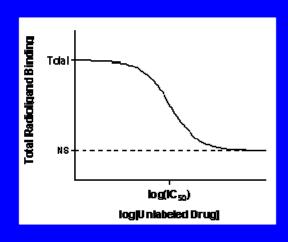


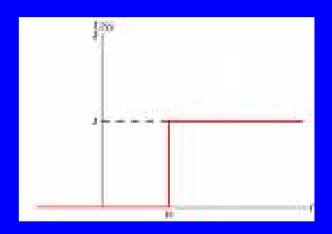
The Well-Integrated Personality is a Well-Integrated Brain



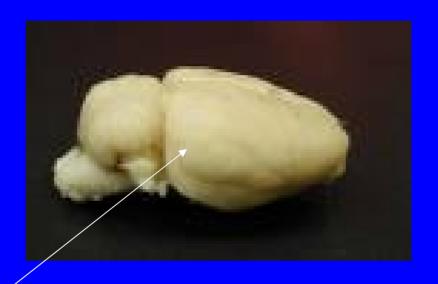
The Amygdala is at the Apex of the Limbic System




All Three Brains can See "Blindsight"



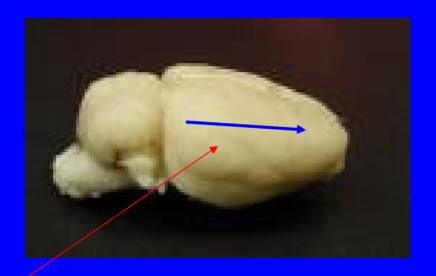
Learning, Extinction, & Relearning



Acquisition Gradual

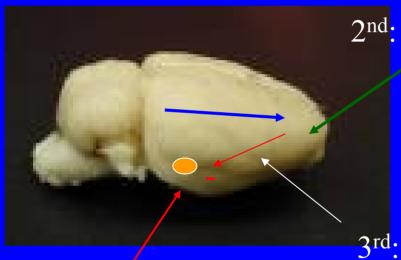
Extinction Gradual

Re-Acquisition Immediate


Is Extinction "Unlearning"

Visual Cortical Lesions

- •Can *Still* acquire a Conditioned Emotional Response (Fear)
- Cannot Extinguish!

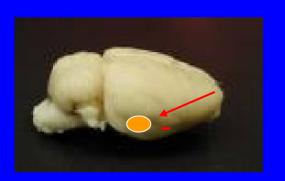

Is Extinction "Unlearning"

Disruption of Visual Cortical Connections to Frontal Cortex

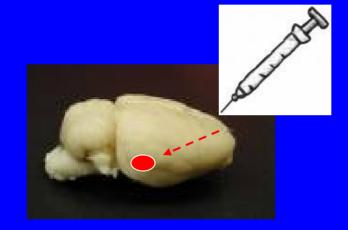
- •Can *Still* acquire a Conditioned Emotional Response (Fear)
- Cannot Extinguish!

Extinction is New Learning

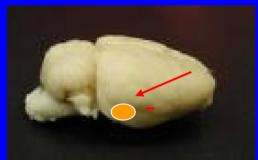
The Frontal Cortex learns to Ignore the stimulus (for now)


3rd: The Frontal Cortex Inhibits the Amygdala's Fear Response

1st: The Amygdala learns to fear a stimulus



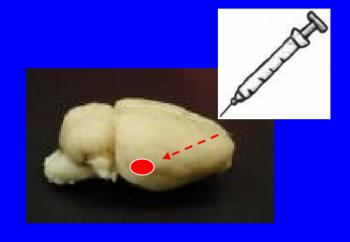
Neomammalian Brain regulates Paleomammalian Brain


Phase I:

- Extinction Acquired
- •Ctx inhibits Amygdala
- •No Fear Response

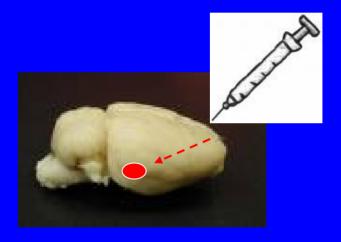
Phase II:

- Cortex Anesthetized
- •Inhibition Failure
- •Fear Response Returns


Phase III:

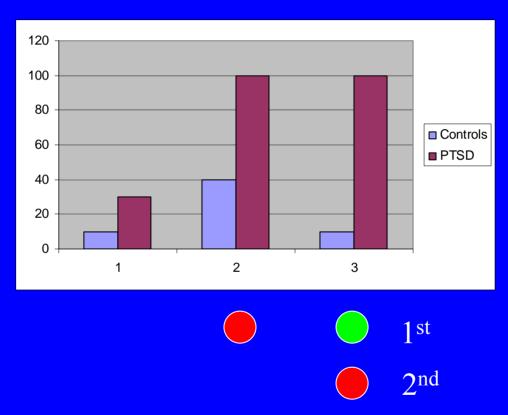
- Cortex Wakes up
- •Inhibition Returns
- •Fear Response Subsides

The Sleep of Reason Produces Monsters


Phase II:

- Cortex Anesthetized
- •Inhibition Failure
- •Fear Response Returns

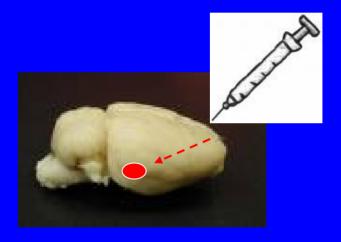
PTSD: A Functional Disconnection Between Prefrontal Cortex & Amygdala?



Phase II:

- Cortex Anesthetized
- •Inhibition Failure
- •Fear Response Returns

Fear Potentiated Startle


Phase 1: Elevated Startle to Unexpected White Noise

Phase 2: Fear of shock Potentiates Startle in all Subjects

Phase 3: PTSD Patents do not respond to Safety Cue

PTSD: A Functional Disconnection Between Prefrontal Cortex & Amygdala?

Phase II:

- Cortex Anesthetized
- •Inhibition Failure
- •Fear Response Returns

Limbic system

Reptilian

Neo-cortex

Neo-Mammalian

•Cognition *Cold Light*

Rene Descartes:
Cogito Ergo Sum

Paleo-Mammalian

Emotionality

Species-Specific Social Behavior

Warm Light Blaise Pascal: The Heart has it's Reasons of which Reason Knows Not

The Heart has it's Reasons of which Reason Knows Not

Fyodor Dostoevsky: The Idiot

"A sensation of existence in the most intense degree"

Patient R.A.: "Each time this happens, thoughts occur very clear and bright to me...as if this is what the world is all about....[this is] the absolute truth."

William James The Peripheral Theory of Emotionality Blasé Pascal & Solder's Heart

Vegal Nerve Stimulation For Intractable Depression

66-75% Ascending Sensory Fibers to the Amygdala

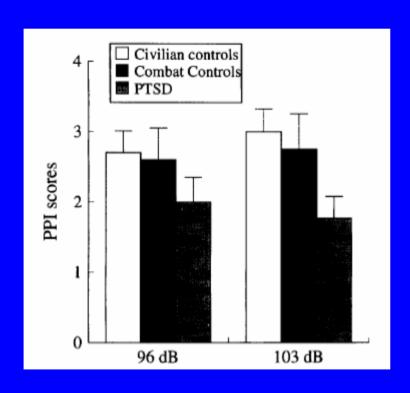
What is the Appropriate Intervention?

- •Insight Therapy?
- •Cognitive Therapy?
- •Exposure Therapy?

Brain Stem Reflexes and the Knowledge of Good and Evil

Brain Stem Reflexes and the Knowledge of Good and Evil

Pre-Pulse Inhibition


An initial benign stimulus:

Inhibits startle reflex to a subsequent strong stimulus

Not due to:

- Anticipation
- Warning
- Experience
- Learning

PTSD: Hyper-Reactive to Benign Stimuli?

Grillon et al., 1996

PTSD: Hyper-Reactive to Benign Stimuli?

Table 3. Mean (SE) Percent Prepulse Inhibition (PPI) in the Three Groups

	Ses	sion			
	1	2			
			Period		
	1	1	2	3S	3T
PTSD veterans ^a	64.6 (6.1)	71.1 (3.1)	61.8 (3.3)	76.7 (4.5)	82.7 (2.6)
Combat controls	81.2 (7.8)	79.3 (9.4)	57.6 (6.8)	78.2 (9.4)	88.4 (6.8)
Civilian controls	92.5 (3.7)	93.2 (1.9)	66.4 (6.8)	89.1 (3.4)	95.8 (7.3)

S, safe; T, threat.

^{*}p < .007 compared to non-PTSD civilians.</p>

Does PTSD Change Personality? or

Is There a Vulnerable Personality?

Table 1
Age and scores on the State-Trait Anxiety Inventory, the Mississippi Scale for Combat-Related Posttraumatic Stress Disorder (PTSD), and the Combat Exposure Scale (CES)

	Age		State anxiety		Trait anxiety		Mississippi		Scale CES	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
PTSD	41.8	1.7	55.7	12.3	62.4	8.1	127.7	20.6	28.7	7.7
Combat controls	43.2	6.4	32.2	8.0	35.8	12.2	70.7	11.6	20.6	11.6
Civilian controls	38.9	6.8	29.9	6.9	32.0	5.4				

Grillon et al., 1996

Table 1. Mean (SD) Age and Psychometric Scores

					State anxiety		
Group	Age (years)	Mississippi	CES ^a	Trait anxiety	Session 1	Session 2	
PTSD veterans (n = 34)	46.0 (3.4)	128.0 (20.3) ^b	27.5 (8.9) ^e	57.7 (10.4) ^d	50.8 (12.6) ^d	52.2 (11.7) ^d	
Combat controls ($n = 17$)	42.2 (4.8)	70.2 (17.0)	21.7 (9.3)	34.9 (10.8)	31.8	34.3	
Civilian controls ($n = 14$)	44.5 (3.9)		_	30.0 (5.2)	27.7 (5.4)	29.2 (2.6)	

Grillon et al., 1998

[&]quot;Combat exposure scale.

 $^{^{}b}p < .0009$ relative to combat controls.

 $^{^{}c}p < .03$ relative to combat controls.

 $d_p < .0009$ relative to combat and civilian controls.

William James The Peripheral Theory of Emotionality

Vegal Nerve Stimulation For Intractable Depression

66-75% Ascending Sensory Fibers to the Amygdala

PTSD and the Triune Brain

The Paleo-Mammalian Brain:

• Too little inhibition from the Neo-Mammalian Brain (Limbic System)

Too much excitation from the Reptilian Brain

How's the Paleo-Mammalian Brain Doing?

The Paleo-Mammalian Brain regulates the release of stress hormones from the Adrenal Gland.

- Dopamine
- Nor-Epinephrine (Nor-Adrenalin)
- Epinephrine (Adrenalin)
- Cortisol Increases expression of first three!!!!!

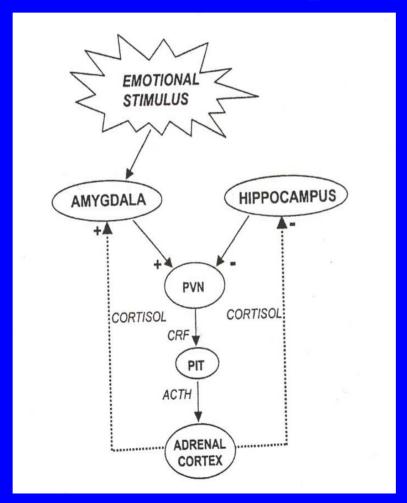
Stress Hormones produce visceral arousal for Fight-or-Flight (Think William James Peripheral Theory of Emotion)

How Does Cortisol Work?

Released by the adrenal gland in times of stress helps us deal with the stress (tiger)

The brain tells the adrenal gland: when and how much cortisol to release

The blood takes some of this cortisol to the brain


For a hormone to work it must have a receptor

to bind with.

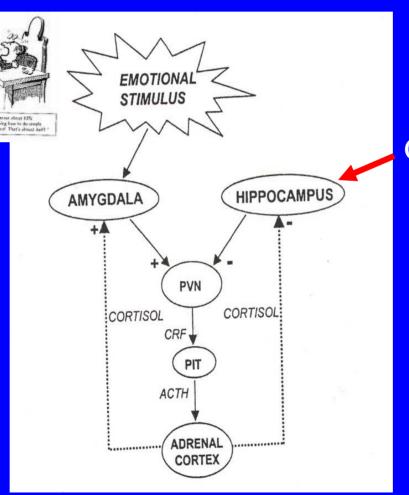
Negative and Positive Feedback of Emotional Response

Positive Feedback Loop

Does the *balance*Between these two
Loops determine
Personality?

Negative Feedback Loop

Cortisol is Neurotoxic To the Hippocampus


Acute Tiger is Replaced by Chronic Boss

Positive Feedback Loop

Does the *balance*Between these two
Loops determine
Personality?

Negative Feedback Loop

Cortisol is Neurotoxic
To the Hippocampus
The Furnace
Melts the Thermostat

The Melted Thermostat? Combat Exposure & Hippocampal Volume

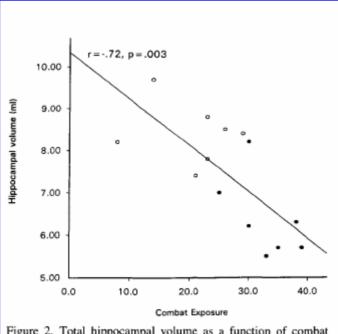


Figure 2. Total hippocampal volume as a function of combat exposure scale score. Closed circles: PTSD subjects; open circles: non-PTSD subjects.

Closed Circles: PTSD

Gervits et al., Biological Psychiatry, 1996

The Melted Thermostat Exposure to Threats

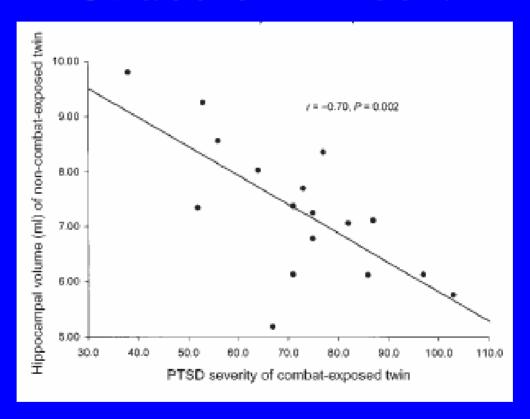
Exposure to threats (script) in sexually abused women with PTSD:

- •122% higher cortisol at exposure vs. abused women w/o PTSD
 - Correlated with PTSD symptomology r=0.70
- •69% higher cortisol during recovery
- •60% higher cortisol at anticipation
- •Greater Increase in sympathetic arousal
 - >Heart rate
 - ► Blood pressure (systole & diastole)
 - > Skin Conductance
 - ➤ NOR-Epinephrine release

Elzinga, et. al.

Elevated State Cortisol?

Adult sexual abuse is associated with elevated neuro-hormones In women with PTSD due to childhood sexual abuse Friedman et al., *Journal of Traumatic Stress*, 2007


Table 2. Urine Variables for Women With PTSD Due to Child Sexual Abuse With (n = 35) and Without (n = 34) Adult Sexual Abuse

Urine variables	Group	M	SD	t(67)	Effect size (d)
Cortisol (μg/day)	No ASA	36.2	9.9	4.34***	1.04
	ASA	52.0	18.8		
Norepinephrine (µg/day)	No ASA	31.1	9.7	3.14**	0.76
	ASA	40.9	15.5		
Epinephrine (µg/day)	No ASA	4.9	2.6	1.17	0.28
	ASA	5.6	2.8		
Dopamine (μg/day)	No ASA	194.6	49.0	4.28***	1.03
	ASA	249.3	56.8		

Note. PTSD = posttraumatic stress disorder; ASA = adult sexual abuse.

^{**} p < .01. *** p < .001.

Cause or Effect?

Does a stressful personality $\rightarrow \downarrow$ Hippocampus $\rightarrow \uparrow$ Vulnerability to PTSD?

Gilbertson et al., Nature Neuroscience, 2002

PTSD: High Co-Morbidity for Depression

Major Depression:

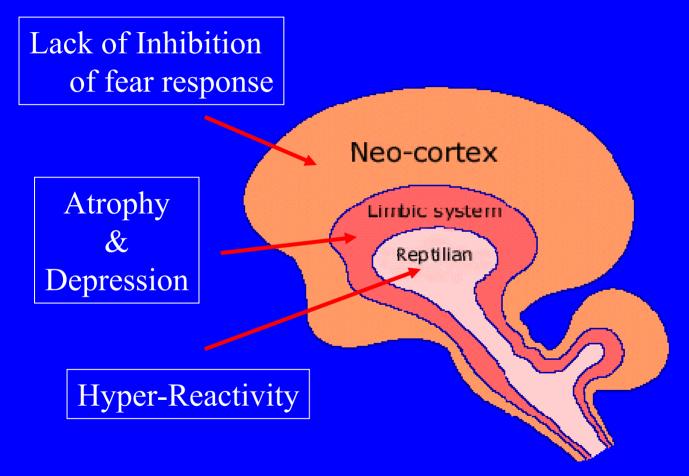
- •Elevated, unregulated cortisol levels

 Dexamethasone Suppression Test

 Metyrapone reverses Tx-resistant MD
- Atrophy of Hippocampus
- Deficits of Cognition & Long-Term Memory
- Anhedonia
- •All AD Tx stimulate BDNF production in Hippocampus (Brain-Derived Neurotrophic Factor)
 - Serotonergics
 - •NOR-Adrenergics
 - •ECT (Most potent Tx & Inducer of BDNF)
 - Exercise
 - •Estrogen & DHEA

BDNF effects on Hippocampus

- ↑ Dendritic Arborization
- ↑ Synaptogenesis
- ↑ Neogenesis


Currently Depressed patients:

- L & R Hippocampus vs. Remitted Patients
- •Negative correlation between Hippocampal size & Duration of MD
- •Negative correlation between Hippocampal size & # of Episodes

(Does smaller Hippocampus lead to more severe illness?)

Caetano et al., Psychiatric Research: Neuroimaging, 2004

A Model of PTSD

What about Impact of Families?

Early Life Trauma

- •Increased risk of PTSD in adulthood from other traumas Reduced capacity to cope with subsequent Stress?
- •Increased risk of Alcoholism in adulthood from early traumas

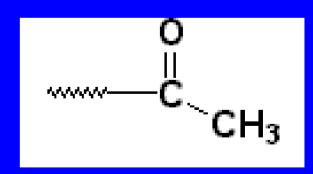
How does Nurturance lead to Permanent Changes in Adult Personality?

Licking & Grooming in infancy leads to a Permanent Increase in:

Cortisol receptors in the Hippocampus

- The Negative Feedback Pathway
- Thus, tighter regulation of the stress response
- Even with cross-fostering
- Critical Period!

How does Nurturance result in more Hippocampal Cortisol Receptors?


Nurturance removes a Methyl Group (CH₃)
 from the gene that codes for the Cortisol Receptor
 In Hippocampal neurons

• Methylation inhibits gene expression

Demethylation promotes gene expression

Nurturance does it Again!

- •DNA is wrapped around a protein skeleton called Histone
- •The tighter the wrap, the less gene expression
- Attaching an Acetyl group loosens the wrapping
 - -Thus increasing gene expression
- Nurturance acetylates histones
 - -Thus increasing gene expression

acetyl group

Summing Up

Mothering Style Permanently Alters:

- •Genetic expression (De-Methylation, Acetylation)
- Brain biochemistry (Cortisol Receptors)
- •Endrocrine (hormone) physiology (cortisol expression)
- •Personality & Behavior (Fear, Exploration, Stress Response)
- Loss of Memory & Cognition with Age
- •Risk of Psychopathology (Learned Helplessness Depression)?

But Wait! - There's More!

High nurturance results in:

More benzodiazepine receptors in the Amygdala

- •The emotion center of the brain
- •Change is permanent
- •What's a benzodiazepine?

Valium

There may be natural valium substances in the brain