Carlson (7e) PowerPoint Lecture Outline Chapter 9: Sleep and Biological Rhythms

This multimedia product and its contents are protected under copyright

law. The following are prohibited by law:

•any public performance or display, including transmission of any image over a network;

•preparation of any derivative work, including extraction, in whole or in part, of any images;

•any rental, lease, or lending of the program.

Sleep

- Sleep is a behavior and an altered state of consciousness
 - Sleep is associated with an urge to lie down for several hours in a quiet environment
 - Few movement occur during sleep (eye movements)
 - The nature of consciousness is changed during sleep
 - We experience some dreaming during sleep
 - We may recall very little of the mental activity that occurred during sleep
- We spend about a third of our lives in sleep
 - A basic issue is to understand the function of sleep

Measures of Sleep

- Electrophysiological instruments can be used in the sleep laboratory to assess the physiological changes that occur during an episode of sleep
 - Muscle tone (EMG)
 - Summated brain wave activity (EEG)
 - Wakefulness: <u>beta</u> activity (13-30 Hz) is present in the EEG record (desynchrony: low amplitude, high frequency waveforms)
 - Eyes closed: <u>alpha</u> activity (8-12 Hz) appears in the EEG record (synchrony: high amplitude, low frequency waveforms)
 - Eye movements
 - Blood flow to the genitals

An EEG Recording of the Stages of Sleep

Awake with a grad with the providence of the providenc Alpha activity

Beta activity

Stage 1 sleep

MAN Theta activity

Stage 4 sleep

what Varman Marin Mar Theta activity Beta activity

Source: From Horne, J.A. Why We Sleep: The Functions of Sleep in Humans and Other Animals. Oxford, England: Oxford University Press, 1988. Copyright @ 2001 by Allyn & Bac on

EEG Waveforms During Sleep

Non-REM Sleep

- Alpha, delta, theta activity are present in the EEG record
 - Stages 1 and 2
 - Stages 3 and 4: delta activity (synchronized)
 - ◆ Termed <u>slow-wave sleep</u> (SWS)
- Light, even respiration
- Muscle control is present (toss and turn)
- Dreaming (cold, rational)
 - Difficult to rouse from stage 4 SWS (resting brain?)

REM Sleep

- Presence of beta activity (desynchronized EEG pattern)
- Enhanced respiration and blood pressure
- Rapid eye movements (REM)
- Pontine-Geniculate-Occipital (PGO) waves
- Loss of muscle tone (paralysis)
- Vivid, emotional dreams
- Signs of sexual arousal
 - Assess impotence: postage stamps versus the sleep lab

Typical Pattern of the Stages of Sleep During a Single Night

Copyright © 2001 by Allyn & Bac on Copyright 2001 by Allyn & Bacon

Sleep Stage Cycles

Figure courtesy of Dr. Eric Chudler

- 1. SWS precedes REM sleep
- 2. REM sleep lengthens over the night
- 3. Basic sleep cycle = 90 minutes

Mental Activity in Sleep

Mental activity continues during sleep

- Dreams occur during SWS and REM sleep
- REM sleep is accompanied by high levels of blood flow in the visual association cortex but low levels in the inferior frontal cortex
- REM eye movements resemble those made when a person scans a visual image
- Nightmares can occur during stage 4 of SWS

What is the Function of Sleep?

Sleep as an <u>adaptive</u> response?

- Sleep is noted in all vertebrates
- The signs of REM sleep (muscle paralysis, EEG desynchrony, eye movements) occur in mammals
- Did sleep evolve to keep our ancestors away from predators?
- Indus dolphins sleep even though doing so is dangerous
 - These dolphins exist in muddy water and through natural selection have become blind

Restoration and repair?

- Brain activity is reduced during SWS (delta activity)
- Persons awakened from SWS appear groggy and confused
- Yet, exercise and forced bed rest have little effect on sleep

Two Possible Explanations for the Relation between Waking, Slow-wave Sleep, and REM Sleep

Copyright © 2001 by Allyn & Bacon

Copyright 2001 by Allyn & Bacon

1

Hypothetical Roles of Chemicals in Sleep

2

Copyright © 2001 by Allyn & Bacon

Copyright 2001 by Allyn & Bacon

14

Sleep Deprivation Studies

- Human sleep deprivation studies indicate that sleep deprivation can impair cognitive function
 - Perceptual distortions and hallucinations as well as impaired ability to concentrate have been reported during sleep deprivation
 - But sleep deprivation does not result in a physiological stress response nor does it interfere with normal bodily function
- Animal studies indicate drastic health consequences of sleep deprivation
 - Rats that are forced to walk on rotating platform lose sleep
 - Sleep deprived rats exhibited increased eating and activity and eventually became ill and died

Sleep Stage Functions

SWS may reflect restoration

- Assessment of SWS after:
 - Prolonged bed rest (no real changes in SWS)
 - Exercise (temperature inc. => inc. SWS)
 - Mental activity increases SWS
- REM sleep may reflect:
 - <u>Vigilance</u>: alertness to the environment
 - <u>Consolidation</u> of learning/memory
 - Species-typical reprogramming
 - <u>Facilitation of brain development</u>: Infants spend more time in REM sleep
 - An <u>antidote</u> for the deleterious effects of SWS

Chemical Control of Sleep/Waking

- Sleep is regulated: loss of SWS or REM sleep is made up somewhat on following nights
 - Does the body produce a <u>sleep-promoting chemical</u> during wakefulness or a <u>wakefulness-promoting chemical</u> during sleep?
- Unlikely that sleep is controlled by blood-borne chemicals in the general circulation given:
 - Siamese twins share the same circulatory system, but sleep independently
 - Bottle-nose dolphins: the two hemispheres sleep independently

Neural Regulation of Arousal

- Electrical stimulation of the brain stem induces arousal
 - Dorsal path: RF--> to medial thalamus --> cortex
 - Ventral path: RF --> to lateral hypothalamus, basal ganglia, and the forebrain
- Neurotransmitters involved in arousal:
 - NE neurons in rat locus coeruleus (LC) show high activity during wakefulness, low activity during sleep (zero during REM sleep)
 - LC neurons may play a role in vigilance
 - Activation of ACh neurons produces behavioral activation and cortical desynchrony
 - ACh agonists increase arousal, ACh antagonists decrease arousal
 - 5-HT: stimulation of the raphe nuclei induces arousal whereas 5-HT antagonists reduce cortical arousal

Neural Control of SWS

 The ventrolateral preoptic area (VLPA) is important for the control of sleep

- Lesions of the preoptic area produce total insomnia, leading to death
- Electrical stimulation of the preoptic area induces signs of drowsiness in cats
- VLPA neurons promote sleep

Neural Control of REM Sleep

- The pons is important for the control of REM sleep
 - PGO waves are the first predictor of REM sleep
 - ACh neurons in the peribrachial pons modulate REM sleep
 - Increased ACh increases REM sleep
 - Peribrachial neurons fire at a high rate during REM sleep
 - Peribrachial lesions reduce REM sleep
 - Pontine ACh neurons project to the thalamus (control of cortical arousal), to the basal forebrain (arousal and desynchrony), and to the tectum (rapid eye movements)
 - Pontine cells project via magnocellular cells within medulla to the spinal cord: release glycine to inhibit alpha-motoneurons (induce REM motor paralysis or atonia)

Onset of REM Sleep in a Cat

Source: Adapted from Steriade, M., Paré, D., Bouhassira, D., Deschênes, M., and Oakson, G. Journal of Neuroscience, 1989, 9, 2215–2229. Copyright @ 2001 by Allyn & Bac on

 Activity of Noradrenergic Neurons in the Locus Coeruleus of Freely Moving Cats During Various Stages of Sleep and Waking

Source: From Aston-Jones, G., and Bloom, F.E. The Journal of Neuroscience, 1981, 1, 876-886. Copyright 1981, The Society for Neuroscience. Copyright @ 2001 by Allyn & Bac on

NT Interactions: REM Sleep

Schematic Diagram of the Role of the VLPA

Copyright © 2001 by Allyn & Bacon

23

Copyright 2001 by Allyn & Bacon

14

A Summary of the Neural Circuitry thought to be Responsible for REM Sleep

Sleep Disorders

- Insomnia refers to a difficulty in getting to sleep or remaining asleep and has many causes
 - Situational
 - Drug-induced: Use of sleeping pills can result in insomnia
 - Sleep apnea: person stops breathing and is awakened when blood levels of carbon dioxide stimulate breathing
- Narcolepsy: Sleep appears at odd times
 - <u>Sleep attack</u>: urge to sleep during the day
 - <u>Cataplexy</u>: REM paralysis occurs, person is still conscious
 - ◆ <u>Sleep paralysis</u>: REM paralysis that occurs just before or just after sleep
 - Narcoleptics have reduced CSF levels of the neuropeptide orexin or altered activity of the orexin-B receptor

Biological Rhythms

Many of our behaviors display rhythmic variation

- SWS/REM cycles last about 90 minutes
 - Daily rest-activity cycle is about 90 minutes
- Circadian rhythms ("about a day")
 - One cycle lasts about 24 hours (e.g. sleep-waking cycle)
 - Light is an external cue that can set the circadian rhythm
 - Some circadian rhythms are endogenous (do not require light) suggesting the existence of an internal (biological) clock
- Monthly rhythms
 - Menstrual cycle
- Seasonal rhythms
 - Aggression, sexual activity in male deer

Suprachiasmatic Nucleus

- The suprachiasmatic nucleus (SCN) contains a biological clock that governs some circadian rhythms
 - SCN receives input from
 - amacrine/ganglion cells in the retina, a pathway that may account for the ability of light to reset the biological clock (zeitgeber function)
 - the intergeniculate leaflet of the lateral geniculate thalamic nucleus
 - This pathway may mediate the ability of other environmental stimuli to reset circadian rhythms (e.g. animals own activity)
 - SCN lesions disrupt circadian rhythms
 - SCN cells may not require direct neural connections to control circadian rhythms, but may do using chemical signals

SCN Clock Cells

SCN cells exhibit circadian rhythms in activity

- SCN glucose metabolism (2-DG method) is higher during the day than during the night
- Each SCN cell appears to have its own clock (separate daily peaks in activity)
 - Yet SCN clock cells act in a synchronized fashion (a chemical rather than a neural effect)

Nature of clock cells

- Hypothesis was that clock cells produced a protein that upon reaching a critical level, inhibited its own production
 - Fruit fly: two genes *per* and *tim* control the production of two proteins: PER and TIM, eventually high levels of these proteins turn off the *per* and *tim* genes, resulting in declining levels of PER and TIM proteins, which in turn activates the two genes

Seasonal Rhythms

- SCN plays a role in governing seasonal rhythms
 - Testosterone secretion in male hampsters shows an annual rhythm with increased secretion as length of day increases
 - This annual rhythm is abolished by SCN lesions; lesioned hampsters secrete testosterone all year long
- Pineal gland interacts with the SCN to control seasonal rhythms
 - The SCN projects to the PVN, which connects with the pineal gland which secretes melatonin
 - During long nights, the pineal gland secretes high amounts of melatonin
 - Lesions of the SCN, of the PVN, or of the neural connection between the SCN and PVN disrupt seasonal rhythms controlled by day length