Chi-Square

Are two ways of Categorizing people or things related?

Both Variables Qualitative/Categorical/Membership
Step 1: Arrange data into a frequency/contingency table
Step 2: Compute Expected Frequencies Based Upon Null Hypothesis

Step 3: Compare Obtained Frequencies to Expected Frequencies Do they Agree?

1: Contingency Table

Are Abortion Attitudes Related to Gender?				
	Abortion Attitude			
Women	Acceptable	Uncceptable	Row Total	
	59	29	88	
Men	15	37	52	
Column Total	74	66	$\mathbf{1 4 0}$	Grand Total

2: Expected Frequencies

For each Cell: (Row Total x Column Total) / Grand Total

| Are Abortion Attitudes Related to Gender? | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | |
| | Acceptable | Uncceptable | Row Total | |
| Women | 59 | 29 | 88 | |
| Men | 15 | 37 | 52 | |
| | | | | |
| Column Total | 74 | 66 | 140 | Grand Total |

74	88	140	46.51
66	88	140	41.49
74	52	140	27.49
66	52	140	24.51

46.51	41.49
27.49	24.51

3: Compare

Error

Estimated Expected

Evaluation
\downarrow

For Each Cell

Do O and E Agree?

O	E	$O-E$	$(O-E)^{2}$	$\frac{(O-E)^{2}}{E}$
59	46.51	12.49	156.00	3.35
15	27.49	-12.49	156.00	5.67
29	41.49	-12.49	156.00	3.76
37	24.51	12.49	156.00	$\chi^{2}=\frac{6.36}{19.14}$

The more the Observed frequencies differ from the Expected Frequencies,
-The Larger X²
-The Lower the probability of the outcome, given H_{0}

Is It Significant?

$d f=$
 (Rows-1)*(Columns-1)

Significance:
Equal to or Greater Than Critical Value

	a levels				
$d f$. 10	. 05	. 02	. 01	. 001
1	2.71	3.84	5.41	6.64	10.81
2	4.60	5.99	7.82	9.21	13.82
3	6.25	7.82	9.84	11.34	16.27
4	7.78	9.49	11.67	13.28	18.46
5	9.24	11.07	13.39	15.09	20.52
6	10.64	12.59	15.03	16.81	22.46
7	12.02	14.07	16.62	18.48	24.32
8	13.36	15.51	18.17	20.09	26.12
9	14.68	16.92	19.68	21.67	27.88
10	15.99	18.31	21.16	23.21	29.59
11	17.28	19.68	22.62	24.72	31.26
12	18.55	21.03	24.05	26.22	32.91
13	19.81	22.36	25.47	27.69	34.53
14	21.06	23.68	26.87	29.14	36.12
15	22.31	25.00	28.26	30.58	37.70
16	23.54	26.30	29.63	32.00	39.25
17	24.77	27.59	31.00	33.41	40.79
18	25.99	28.87	32.35	34.80	42.31
19	27.20	30.14	33.69	36.19	43.82
20	28.41	31.41	35.02	37.57	45.32
21	29,62	32.67	36.34	38.93	46.80
22	30.81	33.92	37.66	40.29	48.27
23	32.01	35.17	38.97	41.64	49.73
24	33.20	36.42	40.27	42.98	51.18
25	34.38	37.65	41.57	44.31	52.62
26	35.56	38.88	42.86	45.64	54.05
27	36.74	40.11	44.14	46.96	55.48
28	37.92	41.34	45.42	48.28	56.89
29	39.09	42.56	46.69	49.59	58.30
30	40.26	43.77	47.96	50.89	59.70

Who Cares?

Is the Relationship non-Trivial?
For a 2×2 Chi-Square

0 = No Relationship
1 = Perfect Relationship (What would that be?)
$\phi=0.10$
$\phi=0.30$
$\phi=0.50$
Small Effect
Medium Effect
Large Effect

$$
\phi=\sqrt{\frac{\chi^{2}}{N}}=\sqrt{\frac{19.14}{140}}=\sqrt{.1367}=.37
$$

Hypothesis Testing: Goodness of Fit
 A One-Group Chi-Square

1. Specify Some Expected Probabilities/Proportions in Advance
2. Collect some data
3. Convert your Expected Proportions into Expected Frequencies Based upon the Total number of subjects assessed
4. Compare your Expected Frequencies to your Obtained Frequencies $d f=$ \# of Categories - 1

Is Handedness Distributed Randomly in Monkeys

What If Outcome Was 14,6?

$$
\begin{aligned}
& \begin{array}{llll}
& \mathbf{R} & \mathbf{L} & \\
\text { Expected Probability } & 50 \% & 50 \% & \\
\text { Obtained Frequency } & 14 & 6 & \mathrm{~N}=20 \\
\text { Expected Frequencies } & 10 & 10 & \mathrm{~N}=20
\end{array} \\
& (14-10)^{2} / 10+(6-10)^{2} / 10 \\
& 16 / 10+16 / 10=3.2 \\
& d f=\mathrm{K}-1=2-1=1 \\
& \text { Critical X }{ }_{2 \text {-tail,1df }}=3.841 \\
& 3.2<3.841 \Rightarrow \text { Retain Null Hypothesis }
\end{aligned}
$$

What If Hypothesis was Monkeys Lateralized to Right?

	R	L	
Expected Probability	50%	50%	
Obtained Frequency	14	6	$\mathrm{~N}=20$
Expected Frequencies	10	10	$\mathrm{~N}=20$

$$
\begin{aligned}
& (14-10)^{2} / 10+(6-10)^{2} / 10 \\
& 16 / 10+16 / 10 \quad=3.2 \\
& d f=\mathrm{K}-1=2-1=1
\end{aligned}
$$

What if More
Monkeys were Lefties?

Critical X ${ }_{1 \text {-tail, } 1 \mathrm{df}}=2.706$
$3.2<2.706 \Rightarrow$ Reject Null Hypothesis

What If Hypothesis was Monkeys Are Not Like Us?

