Chi-Square

Are two ways of Categorizing people or things related?

Both Variables Qualitative/Categorical/Membership

Step 1: Arrange data into a frequency/contingency table

Step 2: Compute Expected Frequencies Based Upon Null Hypothesis

Step 3: Compare Obtained Frequencies to Expected Frequencies Do they Agree?

1: Contingency Table

Are Abortion Attitudes Related to Gender?					
	Abortion Attitude				
	Acceptable	Uncceptable		Row Total	
Women	59	29		88	
Men	15	37		52	
Column Total	74	66		140	Grand Total

2: Expected Frequencies

For each Cell: (Row Total x Column Total) / Grand Total

Are Abortion Attitudes Related to Gender?					
	Abortion Attitude				
	Acceptable	Uncceptable		Row Total	
Women	59	29		88	
Men	15	37		52	
Column Total	74	66		140	Grand Total

74	88	140	46.51	16 51	44.40
66	88	140	41.49	46.51	41.49
74	52	140	27.49	27 /0	24 51
66	52	140	24.51	21.43	24.01

3: Compare

For Each Cell

Do O and E Agree?

0	E	0 – E	$(O - E)^2$	$\frac{(O-E)^2}{E}$
59	46.51	12.49	156.00	3.35
15	27.49	-12.49	156.00	5.67
29	41.49	-12.49	156.00	3.76
37	24.51	12.49	156.00	6.36
				$\chi^2 = \overline{19.14}$

The more the Observed frequencies differ from the Expected Frequencies, •The Larger X²

•The Lower the probability of the outcome, given H₀

Is It Significant?

df = (Rows-1)*(Columns-1)

Significance: Equal to or Greater Than Critical Value

TABLE E Chi square distribution*						
			α levels		÷.	
df	.10	.05	.02	.01	.001	
1	2.71	3.84	5.41	6.64	10.81	
2	4.60	5.99	7.82	9.21	13.82	
3	6.25	7.82	9.84	11.34	16.27	
4	7.78	9.49	11.67	13.28	18.46	
5	9.24	11.07	13.39	15.09	20.52	
6	10.64	12.59	15.03	16.81	22.46	
7	12.02	14.07	16.62	18.48	24.32	
8	13.36	15.51	18.17	20.09	26.12	
9	14.68	16.92	19.68	21.67	27.88	
10	15.99	18.31	21.16	23.21	29.59	
11	17.28	19.68	22.62	24.72	31.26	
12	18.55	21.03	24.05	26.22	32.91	
-13 ·	19.81	22.36	25.47	27.69	34.53	
14	21.06	23.68	26.87	29.14	36.12	
15	22.31	25.00	28.26	30.58	37.70	
16	23.54	26.30	29.63	32.00	39.25	
17	24.77	27.59	31.00	33.41	40.79	
18	25.99	28.87	32.35	34.80	42.31	
19	27.20	30.14	33.69	36.19	43.82	
20	28.41	31.41	35.02	37.57	45.32	
21	29.62	32.67	36.34	38.93	46.80	
22	30.81	33.92	37.66	40.29	48.27	
23	32.01	35.17	38.97	41.64	49.73	
24	33.20	36.42	40.27	42.98	51.18	
25	34.38	37.65	41.57	44.31	52.62	
26	35.56	38.88	42.86	45.64	54.05	
27	36.74	40.11	44.14	46.96	55.48	
28	37.92	41.34	45.42	48.28	56.89	
29	39.09	42.56	46.69	49.59	58.30	
30	40.26	43.77	47.96	50.89	59.70	

Who Cares?

Is the Relationship non-Trivial?

For a 2x2 Chi-Square

$$\phi = \sqrt{\frac{\chi^2}{N}}$$

0 = No Relationship 1 = Perfect Relationship (What would that be?)

$$\phi = \sqrt{\frac{\chi^2}{N}} = \sqrt{\frac{19.14}{140}} = \sqrt{.1367} = .37$$

Hypothesis Testing: Goodness of Fit A One-Group Chi-Square

- 1. Specify Some Expected Probabilities/Proportions in Advance
- 2. Collect some data
- 3. Convert your Expected Proportions into Expected Frequencies Based upon the Total number of subjects assessed
- 4. Compare your Expected Frequencies to your Obtained Frequencies df = # of Categories 1

Is Handedness Distributed Randomly in Monkeys

	R	L	
Expected Probability	50%	50%	
Obtained Frequency	15	5	N=20
Expected Frequencies	10	10	N=20

 $\chi^2 = \Sigma \left[\frac{(O-E)^2}{E} \right]$

 $(15-10)^2/10 + (5-10)^2/10$ 25/10 + 25/10 = 5df = K-1 = 2-1 = 1

Critical $X^{2}_{2-tail,1df} = 3.841$ 5 > 3.841 \Rightarrow Reject Null Hypothesis

What If Outcome Was 14,6?

RLExpected Probability50%Obtained Frequency146N=20Expected Frequencies1010N=20

 $\chi^2 = \Sigma \left[\frac{(O-E)^2}{E} \right]$

 $(14-10)^2/10 + (6-10)^2/10$ 16/10 + 16/10 = 3.2 df = K-1 = 2-1 = 1

Critical $X^2_{2-tail,1df} = 3.841$ 3.2 < 3.841 \Rightarrow Retain Null Hypothesis

What If Hypothesis was Monkeys Lateralized to Right?

	R	L	
Expected Probability	50%	50%	
Obtained Frequency	14	б	N=20
Expected Frequencies	10	10	N=20

$$\chi^2 = \Sigma \left[\frac{(O-E)^2}{E} \right]$$

What if More Monkeys were Lefties? $(14-10)^2/10 + (6-10)^2/10$ 16/10 + 16/10 = 3.2 df = K-1 = 2-1 = 1

Critical $X^{2}_{1-tail,1df} = 2.706$ 3.2 < 2.706 \Rightarrow Reject Null Hypothesis

What If Hypothesis was Monkeys Are Not Like Us?

	R	L	
Expected Probability	90%	10%	
Obtained Frequency	15	5	N=20
Expected Frequencies	18	2	N=20

$$\chi^2 = \Sigma \left[\frac{(O-E)^2}{E} \right]$$

 $(15-18)^2/18 + (5-2)^2/2$ 9/18 + 9/2 = 0.5 + 4.5 = 5 df = K-1 = 2-1 = 1

Critical $X^{2}_{2-tail,1df} = 3.841$ 5 > 3.841 \Rightarrow Reject Null Hypothesis