Repeated Measures ANOVA

One Factor, Correlated Measures: Same reasoning of Correlated Measures t-test More Power (and more efficient) Pulls out relatively small differences among treatments Relative to Big differences among subjects Removes Differences among subjects from error term

Subjects vs. Treatments

	Levels of independent variable, X				
Subjects	X_1	X_2	<i>X</i> ₃		
S ₁	57	60	64		
S_2	71	72	74		
S ₃	75	76	78		
S_4	93	92	96		
\overline{X}	74	75	78		

↑ Large Differences (Error) ↓

$\leftarrow \text{Small Differences (Effect)} \rightarrow$

Partitioning The Variance

$$SS_{Total} = SS_{Subjects} + SS_{Treatment} + SS_{Error}$$

SS_{Error} Is the Variability which a single subject would have If you repeatedly measured him without changing treatment

Partitioning The Variance

 $SS_{Total} = SS_{Subjects} + SS_{Treatment} + SS_{Error}$

 SS_{Error} Is the Variability which a single subject would have If you repeatedly measured him without changing treatment

The Structure of the ANOVA

Partitioning the Total Sum of Squared Deviations From the Grand Mean

Spontaneous Variability of Subject Change is not the same for each Subject

D.V.: Test Score

f Subject e for each Subjects

If you test your subjects repeatedly: Counter Balance for (e.g.) practice effects/fatigue

POC: Piece of Cake

	1st choice	Control	Notes
S 1	57	60	64
S 2	71	72	74
S 3	75	76	78
S 4	93	92	96

Step 1: Find The Total SS

	Raw	Cell	Square
	Data	Deviations	Deviations
S1T1	57	-18.7	348.4
S2T1	71	-4.7	21.8
S3T1	75	-0.7	0.4
S4T1	93	17.3	300.4
S1T2	60	-15.7	245.4
S2T2	72	-3.7	13.4
S3T2	76	0.3	0.1
S4T2	92	16.3	266.8
S1T3	64	-11.7	136.1
S2T3	74	-1.7	2.8
S3T3	78	2.3	5.4
S4T3	96	20.3	413.4
Grand Mean=	75.67	SS-Total=	1754.7

Step 2: Compute Between Subjects SS

Subject				
Means	Deviation	Sq Dev	Sq Dev*3	
60.3	-15.3	235.1	705.33	
72.3	-3.3	11.1	33.33	
76.3	0.7	0.4	1.33	
93.7	18.0	324	972	
		SS-Sub=	1712	"/3
		MS-Sub=	570.7	

Step 3: Compute Treatment SS

Treatment Means	74	75	78			
Deviation	-1.7	-0.7	2.3			
Sq Dev	2.8	0.4	5.4			
Sq dev*4	11.1	1.8	21.8	SS-Treat=	34.7	"/2
				MS-Treat=	17.3	

Step 4: Compute SS Error

SS-Total	"-	SS-Sub-	SS-Treat	"=	SS-Error
1754.7		1712	34.7		8.0
					"/(4-1)(3-1)
				MS-Error=	1.333

This is the Same as the Interaction Term in a 2-Way ANOVA IV₁: Treatment IV₂: Subject Interaction: Subject x Treatment

Step 5: Determine Degrees of Freedom

In general:For the strategy study: $df_{tot} = N_{tot} - 1$ $df_{tot} = 12 - 1 = 11$ $df_{subjects} = N_s - 1$ $df_{subjects} = 4 - 1 = 3$ $df_{treat} = N_t - 1$ $df_{strategies} = 3 - 1 = 2$ $df_{error} = (N_s - 1)(N_t - 1)$ $df_{error} = (3)(2) = 6$

Just like Interaction df

Step 6: Calculate MS & F

F =	<mark>: MS-Trea</mark>	t /	MS-Error	
"	17.3	/	1.333 = 13.003	

Contraction of the second		and the second		
Source	SS	df	MS	F
Subjects	1712.000	3		
Strategies	34.667	2	17.333	13.00
Error	8.000	6	1.333	
Fotal	1754.667	11		

If ANOVA is Significant

Use Tukey Test to compare treatments

$$\text{HSD} = \frac{\overline{X}_1 - \overline{X}_2}{s_{\overline{X}}}$$

$$s_{\bar{X}} = \sqrt{\frac{MS_{\text{error}}}{N_t}}$$

N_t is Number of Subjects in your Experiment

Caution

•Caryover effects Counter-balance Vs. Trend Analysis

•Populations Normally Distributed