Repeated Measures ANOVA

One Factor, Correlated Measures:
Same reasoning of Correlated Measures t-test
More Power (and more efficient)
Pulls out relatively small differences among treatments
Relative to Big differences among subjects
Removes Differences among subjects from error term

Subjects vs. Treatments

Levels of independent variable, X

Subjects	\boldsymbol{X}_{1}	\boldsymbol{X}_{2}	\boldsymbol{X}_{3}
S_{1}	57	60	64
S_{2}	71	72	74
S_{3}	75	76	78
S_{4}	$\frac{93}{74}$	$\underline{92}$	$\underline{96}$
\bar{X}	75	78	

\uparrow
Large
Differences
(Error)
\downarrow
\leftarrow Small Differences (Effect) \rightarrow

Partitioning The Variance

$\mathrm{SS}_{\text {Total }}=\mathrm{SS}_{\text {Subjects }}+\mathrm{SS}_{\text {Treatment }}+\mathrm{SS}_{\text {Error }}$
$\mathrm{SS}_{\text {Error }}$ Is the Variability which a single subject would have If you repeatedly measured him without changing treatment

Partitioning The Variance

$\mathrm{SS}_{\text {Total }}=\mathrm{SS}_{\text {Subjects }}+\mathrm{SS}_{\text {Treatment }}+\mathrm{SS}_{\text {Error }}$
$\mathrm{SS}_{\text {Emor }}$ Is the Variability which a single subject would have If you repeatedly measured him without changing treatment

The Structure of the ANOVA

Partitioning the Total Sum of Squared Deviations From the Grand Mean

Spontaneous Variability of Subject Change is not the same for each Subject

D.V.: Test Score

Subjects

If you test your subjects repeatedly:
Counter Balance for (e.g.) practice effects/fatigue

POC: Piece of Cake

	1st choice	Control	Notes
S1	57	60	64
S2	71	72	74
S3	75	76	78
S4	93	92	96

Step 1: Find The Total SS

	Raw	Cell	Square
	Data	Deviations	Deviations
S1T1	57	-18.7	348.4
S2T1	71	-4.7	21.8
S3T1	75	-0.7	0.4
S4T1	93	17.3	300.4
S1T2	60	-15.7	245.4
S2T2	72	-3.7	13.4
S3T2	76	0.3	0.1
S4T2	92	16.3	266.8
S1T3	64	-11.7	136.1
S2T3	74	-1.7	2.8
S3T3	78	2.3	5.4
S4T3	96	20.3	413.4
Grand Mean=	75.67	SS-Total=	1754.7

Step 2: Compute Between Subjects SS

Subject			
Means	Deviation	Sq Dev	Sq Dev*3
60.3	-15.3	235.1	705.33
72.3	-3.3	11.1	33.33
76.3	0.7	0.4	1.33
93.7	18.0	324	972
		SS-Sub=	$\mathbf{1 7 1 2}$
		MS-Sub=	$\mathbf{5 7 0 . 7}$

Step 3: Compute Treatment SS

Treatment Means	74	75	78			
Deviation	-1.7	-0.7	2.3			
Sq Dev	2.8	0.4	5.4			
Sq dev*4	11.1	1.8	21.8	SS-Treat=	$\mathbf{3 4 . 7}$	"/2
				MS-Treat=	$\mathbf{1 7 . 3}$	

Step 4: Compute SS Error

SS-Total "-	SS-Sub-	SS-Treat	"=	SS-Error
1754.7		1712	34.7	
				MS-Error=

This is the Same as the Interaction Term in a 2-Way ANOVA
IV_{1} : Treatment
IV_{2} : Subject
Interaction: Subject x Treatment

Step 5: Determine Degrees of Freedom

In general:

$$
\begin{aligned}
d f_{\text {tot }} & =N_{\text {tot }}-1 \\
d f_{\text {subjects }} & =N_{s}-1 \\
d f_{\text {treat }} & =N_{t}-1 \\
d f_{\text {error }} & =\left(N_{s}-1\right)\left(N_{t}-1\right)
\end{aligned}
$$

For the strategy study:

$$
\begin{aligned}
d f_{\text {tot }} & =12-1=11 \\
d f_{\text {subjects }} & =4-1=3 \\
d f_{\text {strategies }} & =3-1=2 \\
d f_{\text {error }} & =(3)(2)=6
\end{aligned}
$$

Just like Interaction df

Step 6: Calculate MS \& F

F = MS-Treat I MS-Error
 " 17.3 | $1.333=13.003$

TABLE 12.4 ANOVA summary table for the exam strategy study

Source	SS	$d f$	$M S$	F
Subjects	1712.000	3		
Strategies	34.667	2	17.333	13.00
Error	8.000	$\frac{6}{11}$	1.333	
Total	1754.667			
	$F_{.05}(2,6)$	$=5.14$	$F_{01}(2,6)=10.92$	

If ANOVA is Significant

Use Tukey Test to compare treatments

N_{t} is Number of Subjects in your
Experiment

Caution

-Caryover effects
Counter-balance
Vs. Trend Analysis
-Populations Normally Distributed

