
1

Introduction to C

#include <stdio.h>

int main ()

{

printf(“Welcome to CS 1621!\n”);

}

Outline

II. Program Basics
A. Program skeleton

preprocessor directives
global declarations
functions

local declarations
statements

B. Comments and Documentation
C. Names (identifiers)

reserved words

Outline (cont)

II. Program Basics (cont)
D. Variable declarations

1. Memory allocation
2. Atomic types

void, int, float, char

E. Constants
1. literal
2. defined

3. memory

Outline (cont)

II. Program Basics (cont)
F. Formatted input/output

1. Files
2. Printf (monitor output)

a. format strings
field specifications

b. data list

3. Scanf (keyboard input)
a. format strings
b. address list

4. Prompting for Input

History of C

1960: ALGOL (ALGOrithmic Language)
1967: BCPL (Basic Combined Programming

Language)
1970: B programming language (typeless)
1972: C: BCPL plus B with types
1978: Kernighan + Ritchie standard for C
1989: ANSI standard for C

C Program Structure

• Program defined by:
– global declarations
– function definitions

• May contain preprocessor
directives

• Always has one function
named main, may contain
others

Preprocessor Directives

Global Declarations

Function Definitions

int main () {

}

Local Declarations

Statements

2

Parts of a Program

#include <stdio.h>

int x;

int main () {
 int y;

 printf("Enter x and y: ");
 scanf(&x,&y);
 printf("Sum is %d\n",x+y);
}

Preprocessor Directive

Global Declaration

Function

Local Declaration

Statements

Preprocessor Directives

• Begin with #
• Instruct compiler to perform some

transformation to file before compiling
• Example: #include <stdio.h>

– add the header file stdio.h to this file
– .h for header file
– stdio.h defines useful input/output functions

Declarations

• Global
– visible throughout program
– describes data used throughout program

• Local
– visible within function
– describes data used only in function

Functions

• Consists of header and body
– header: int main ()
– body: contained between { and }

• starts with location declarations

• followed by series of statements

• More than one function may be defined
• Functions are called (invoked) - more later

Main Function

• Every program has one function main
• Header for main: int main ()
• Program is the sequence of statements

between the { } following main
• Statements are executed one at a time from

the one immediately following to main to
the one before the }

Comments

• Text between /* and */
• Used to “document” the code for the human

reader
• Ignored by compiler (not part of program)
• Have to be careful

– comments may cover multiple lines
– ends as soon as */ encountered (so no internal

comments - /* An /* internal */ comment */)

3

Comment Example
#include <stdio.h>

/* This comment covers
 * multiple lines
 * in the program.
 */

int main () /* The main header */ {
 /* No local declarations */

 printf(“Too many comments\n”);
} /* end of main */

Documentation

• Global - start of program, outlines overall
solution, may include structure chart

• Module - when using separate files,
indication of what each file solves

• Function - inputs, return values, and logic
used in defining function

• Add documentation for key (tough to
understand) comments

• Names of variables - should be chosen to be
meaningful, make program readable

Syntax of C

• Rules that define C language
– Specify which tokens are valid
– Also indicate the expected order of tokens

• Some types of tokens:
– reserved words: include printf int ...
– identifiers: x y ...
– literal constants: 5 ‘a’ 5.0 ...
– punctuation: { } ; < > # /* */

Identifier

• Names used for objects in C
• Rules for identifiers in C:

– first char alphabetic [a-z,A-Z] or underscore (_)
– has only alphabetic, digit, underscore chars
– first 31 characters are significant
– cannot duplicate a reserved word
– case (upper/lower) matters

Reserved Words

• Identifiers that already have meaning in C

• Examples:

– include, main, printf, scanf, if, else, …

– more as we cover C language

Valid/Invalid Identifiers

Valid
sum
c4_5
A_NUMBER
longnamewithmanychars
TRUE
_split_name

Invalid
7of9
x-name
name with spaces
1234a
int
AXYZ&

4

Program Execution

• Global declarations set up
• Function main executed

– local declarations set up
– each statement in statement section executed

• executed in order (first to last)

• changes made by one statement affect later
statements

Variables

• Named memory location
• Variables declared in global or local

declaration sections
• Syntax: Type Name;
• Examples:

int sum;
float avg;
char dummy;

Variable Type

• Indicates how much memory to set aside for
the variable

• Also determines how that space will be
interpreted

• Basic types: char, int, float
– specify amount of space (bytes) to set aside
– what can be stored in that space
– what operations can be performed on those vars

Variable Name

• Legal identifier
• Not a reserved word
• Must be unique:

– not used before
– variable names in functions (local declarations)

considered to be qualified by function name
– variable x in function main is different from x

in function f1

Multiple Variable Declarations

• Can create multiple variables of the same
type in one statement:
int x, y, z;
is a shorthand for
int x;
int y;
int z;
- stylistically, the latter is often preferable

Variable Initialization

• Giving a variable an initial value
• Variables not necessarily initialized when

declared (value is unpredictable - garbage)
• Can initialize in declaration:
• Syntax: Type Name = Value;
• Example:

int x = 0;

5

Initialization Values

• Literal constant (token representing a value,
like 5 representing the integer 5)

• An expression (operation that calculates a
value)

• Function call

• The value, however specified, must be of
the correct type

Multiple Declaration Initialization

• Can provide one value for variables
initialized in one statement:
int x, y, z = 0;

• Each variable declared and then initialized
with the value

Type

• Set of possible values
– defines size, how values stored, interpreted

• Operations that can be performed on those
possible values

• Data types are associated with objects in C
(variables, functions, etc.)

Standard Types

• Atomic types (cannot be broken down)
– void
– char
– int
– float, double

• Derived types
– composed of other types

Literal Constants

• Sequences of characters (tokens) that
correspond to values from that type
-35 is the integer -35
3.14159 is the floating pointer number 3.14159
‘A’ is the character A

• Can be used to initialize variables

Void Type

• Type name: void
• Possible values: none
• Operations: none
• Useful as a placeholder

6

Integer Type

• Type name:
– int
– short int
– long int

• Possible values: whole numbers (within
given ranges) as in 5, -35, 401

• Operations: arithmetic (addition,
subtraction, multiplication, …), and others

Integer Types/Values

Type Bytes Bits Min Val Max Val

short int 2 16 -32768 32767

int 4 32 -2147483648 2147483647

long int 4 32 -2147483648 2147483647

Why Limited?

• With a fixed number of bits, only a certain
number of possible patterns

• 16 bits, 65,536 possible patterns
– 32768 negative numbers
– 1 zero
– 32767 positive numbers

• Overflow: attempt to store a value to large
in a variable (40000 in short int)

Two’s Complement

Integers:
positive number: 0, number in binary

97 in binary 1*64 + 1*32 + 1*1 (1100001)
pad with leading zeroes (0 00000001100001) - 16 bits

zero: 0, all zeroes
negative number: 1, (inverse of number + 1)

-97 (1, 111111110011110 + 1)

1 111111110011111

Unsigned Integers

• Type: unsigned int
• No negative values
• unsigned int:

– possible values: 0 to 65536

• Representation: binary number

Integer Literal Constants

Syntax:
1 or more digits
Optional leading sign (+ or -)
Optional l or L at the end for long
Optional u or U for unsigned

Examples:
5, -35, 401, 4010L, -350L, 2000UL

7

Floating-Point Type

• Type names:
– float
– double
– long double

• Possible values: floating point numbers, 5.0
-3.5, 4.01

• Operations: arithmetic (addition,
subtraction, multiplication, …), and others

Floating-Point Representation

• float: 4 bytes, 32 bits
• double: 8 bytes, 64 bits
• long double: 10 bytes, 80 bits
• Representation:

– magnitude (some number of bits) plus exponent
(remainder of bits)

– 3.26 * 10^4 for 32600.0

Floating-Point Limitations

• Maximum, minimum exponents
– maximum possible value (largest positive

magnitude, largest positive exponent)
– minimum value (largest negative magnitude,

largest positive exponent)
– can have overflow, and underflow

• Magnitude limited
– cannot differentiate between values such as

1.00000000 and 1.00000001

Floating-Point Literals

• Syntax:
– Zero or more digits, decimal point, then zero or

more digits (at least one digit)
– Whole numbers also treated as float
– Optional sign at start
– Can be followed by e and whole number (to

represent exponent)
– f or F at end for float
– l or L at end for long double

• Examples: 5, .5, 0.5, -1.0, 2.1e+3, 5.1f

Character Type

• Type name: char
• Possible values: keys that can be typed at

the keyboard
• Representation: each character assigned a

value (ASCII values), 8 bits
– A - binary number 65
– a - binary number 97
– b - binary number 98
– 2 - binary number 50

Character Literals

• Single key stroke between quote char ‘
• Examples: ‘A’, ‘a’, ‘b’, ‘1’, ‘@’
• Some special chars:

– ‘\0’ - null char
– ‘\t’ - tab char
– ‘\n’ - newline char
– ‘\’’ - single quote char
– ‘\\’ - backslash char

8

String Literals

• No string type (more later)
• Contained between double quote chars (“)
• Examples:

“” - null string
“A string”
“String with newline \n char in it”
“String with a double quote \” in it”

Constants

• Literal constants - tokens representing
values from type

• Defined constants
– syntax: #define Name Value
– preprocessor command, Name replaced by

Value in program
– example: #define MAX_NUMBER 100

Constants (cont)

• Memory constants
– declared similar to variables, type and name
– const added before declaration
– Example: const float PI = 3.14159;
– Can be used as a variable, but one that cannot

be changed
– Since the value cannot be changed, it must be

initialized

Formatted Input/Output

• Input comes from files
• Output sent to files
• Other objects treated like files:

– keyboard - standard input file (stdin)
– monitor - standard output file (stdout)

• Generally send/retrieve characters to/from
files

Formatted Output

• Command: printf - print formatted
• Syntax: printf(Format String, Data List);

– Format string any legal string
– Characters sent (in order) to screen

• Ex.: printf(“Welcome to\nCS 1621!\n”);
causes
Welcome to
CS 1621!
to appear on monitor

Formatted Output (cont)

• Successive printf commands cause output to
be added to previous output

• Ex.
printf(“Hi, how “);
printf(“is it going\nin 1621?”);
prints
Hi, how is it going
in 1621?
To the monitor

9

Field Specifications

• Format string may contain one or more field
specifications
– Syntax: %[Flag][Width][Prec][Size]Code
– Codes:

• c - data printed as character

• d - data printed as integer
• f - data printed as floating-point value

– For each field specification, have one data
value after format string, separated by commas

Field Specification Example

printf(“%c %d %f\n”,’A’,35,4.5);
produces
A 35 4.50000

(varies on different computers)

Can have variables in place of literal constants
(value of variable printed)

Width and Precision

• When printing numbers, generally use
width/precision to determine format
– Width: how many character spaces to use in

printing the field (minimum, if more needed,
more used)

– Precision: for floating point numbers, how
many characters appear after the decimal point,
width counts decimal point, number of digits
after decimal, remainder before decimal

Width/Precision Example

printf(“%5d%8.3f\n”,753,4.1678);
produces
 753 4.168

values are right justified

If not enough characters in width, minimum
number used
use 1 width to indicate minimum number of chars

should be used

Left Justification (Flags)

Put - after % to indicate value is left justified
printf(“%-5d%-8.3fX\n”,753,4.1678);
produces
753 4.168 X

For integers, put 0 after % to indicate should
pad with 0’s
printf(“%05d”,753);
produces
00753

Size Indicator

• Use hd for small integers

• Use ld for long integers

• Use Lf for long double

• Determines how value is treated

10

Printf Notes

• Important to have one value for each field
specification
– some C versions allow you to give too few

values (garbage values are formatted and
printed)

• Values converted to proper type
– printf(“%c”,97); produces the character a on the

screen

Formatted Input

• Command: scanf - scan formatted
• Syntax: scanf(Format String, Address List);

– Format string a string with one or more field
specifications

– Characters read from keyboard, stored in
variables

• scanf(“%c %d %f”,&cVar,&dVar,&fVar);
attempts to read first a single character, then a

whole number, then a floating point number
from the keyboard

Formatted Input (cont)

• Generally only have field specifications and
spaces in string
– any other character must be matched exactly

(user must type that char or chars)
– space characters indicate white-space is ignored
– “white-space” - spaces, tabs, newlines
– %d and %f generally ignore leading white

space anyway (looking for numbers)
– %d and %f read until next non-number char

reached

Formatted Input (cont)

• More notes
– can use width in field specifications to indicate

max number of characters to read for number
– computer will not read input until return typed
– if not enough input on this line, next line read,

(and line after, etc.)
– inappropriate chars result in run-time errors (x

when number expected)
– if end-of-file occurs while variable being read,

an error occurs

Address Operator

• & - address operator
• Put before a variable (as in &x)
• Tells the computer to store the value read at

the location of the variable
• More on address operators later

Scanf Rules

• Conversion process continues until
– end of file reached
– maximum number of characters processed
– non-number char found number processed
– an error is detected (inappropriate char)

• Field specification for each variable
• Variable address for each field spec.
• Any character other than whitespace must

be matched exactly

11

Scanf Example

scanf(“%d%c %f”,&x,&c,&y);

and following typed:
-543A

4.056 56

-543 stored in x, A stored in c, 4.056 stored in
y, space and 56 still waiting (for next scanf)

Prompting for Input

• Using output statements to inform the user
what information is needed:
printf(“Enter an integer: “);
scanf(“%d”,&intToRead);

• Output statement provides a cue to the user:
Enter an integer: user types here

