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Bayesian networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:

P(Xi|Parents(Xi))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over Xi for each combination of parent values
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Example

Topology of network encodes conditional independence assertions:

Weather Cavity

Toothache Catch

Weather is independent of the other variables

Toothache and Catch are conditionally independent given Cavity

Chapter 14.1–3 4

Example

I’m at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn’t call. Sometimes it’s set off by minor earthquakes. Is there a
burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

– A burglar can set the alarm off
– An earthquake can set the alarm off
– The alarm can cause Mary to call
– The alarm can cause John to call
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Example contd.
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Compactness

A CPT for Boolean Xi with k Boolean parents has
B E

J

A

M

2k rows for the combinations of parent values

Each row requires one number p for Xi = true
(the number for Xi = false is just 1− p)

If each variable has no more than k parents,
the complete network requires O(n · 2k) numbers

I.e., grows linearly with n, vs. O(2n) for the full joint distribution

For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25 − 1 = 31)
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Global semantics

Global semantics defines the full joint distribution
B E

J

A

M

as the product of the local conditional distributions:

P (x1, . . . , xn) = Πn
i = 1P (xi|parents(Xi))

e.g., P (j ∧m ∧ a ∧ ¬b ∧ ¬e)

=

Chapter 14.1–3 8

Global semantics

“Global” semantics defines the full joint distribution
B E

J

A

M

as the product of the local conditional distributions:

P (x1, . . . , xn) = Πn
i = 1P (xi|parents(Xi))

e.g., P (j ∧m ∧ a ∧ ¬b ∧ ¬e)

= P (j|a)P (m|a)P (a|¬b,¬e)P (¬b)P (¬e)

= 0.9× 0.7× 0.001× 0.999× 0.998

≈ 0.00063
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Local semantics

Local semantics: each node is conditionally independent
of its nondescendants given its parents

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j

Theorem: Local semantics ⇔ global semantics
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Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j
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Constructing Bayesian networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X1, . . . , Xn

2. For i = 1 to n
add Xi to the network
select parents from X1, . . . , Xi−1 such that

P(Xi|Parents(Xi)) = P(Xi|X1, . . . , Xi−1)

This choice of parents guarantees the global semantics:

P(X1, . . . , Xn) = Πn
i = 1P(Xi|X1, . . . , Xi−1) (chain rule)

= Πn
i = 1P(Xi|Parents(Xi)) (by construction)
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