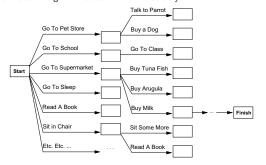
PLANNING

Chapter 11


Outline

- Search vs. planning
- ♦ STRIPS operators
- ♦ Partial-order planning

Chapter 11 2

Search vs. planning

Consider the task *get milk, bananas, and a cordless drill* Standard search algorithms seem to fail miserably:

After-the-fact heuristic/goal test inadequate

Chapter 11

At(p) Sells(p,x)

Buy(x)

Have(x)

Chapter 11 1

Search vs. planning contd.

Planning systems do the following:

- 1) open up action and goal representation to allow selection
- 2) divide-and-conquer by subgoaling
- 3) relax requirement for sequential construction of solutions

	Searcn	Planning
States	Lisp data structures	Logical sentences
Actions	Lisp code	Preconditions/outcomes
Goal	Lisp code	Logical sentence (conjunction)
Plan	Sequence from S_0	Constraints on actions
· · · · · · · · · · · · · · · · · · ·		

Chapter 11 4

STRIPS operators

Tidily arranged actions descriptions, restricted language

ACTION: Buy(x)

PRECONDITION: At(p), Sells(p, x)

Effect: Have(x)

[Note: this abstracts away many important details!]

Restricted language \Rightarrow efficient algorithm

Precondition: conjunction of positive literals

Effect: conjunction of literals

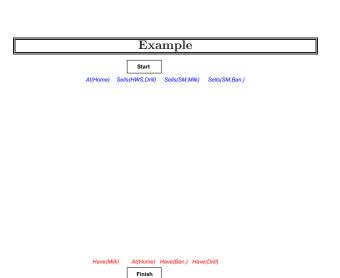
A complete set of STRIPS operators can be translated

into a set of successor-state axioms

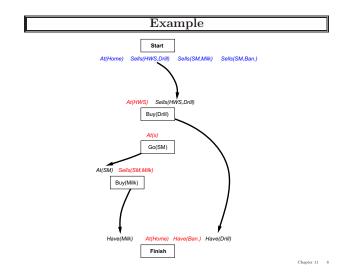
Partially ordered plans

Partially ordered collection of steps with

Start step has the initial state description as its effect Finish step has the goal description as its precondition causal links from outcome of one step to precondition of another temporal ordering between pairs of steps


Open condition = precondition of a step not yet causally linked

A plan is complete iff every precondition is achieved


A precondition is achieved iff it is the effect of an earlier step and no possibly intervening step undoes it

Chapter 11 5

Chapter 11

Chapter 11 7

Start Al(Home) Go(HWS) Al(HWS) Sells(HWS,Dnill) Buy(Drill) Al(HWS) Go(SM) Al(HWS) Sells(SM,Milk) Al(HWS) Sells(SM,Ban.) Buy(Milk) Al(Home) Have(Milk) Al(Home) Have(Ban.) Have(Drill) Finish

Planning process

Operators on partial plans:

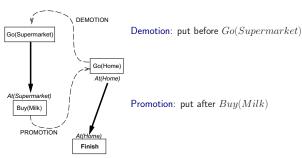
add a link from an existing action to an open condition add a step to fulfill an open condition order one step wrt another to remove possible conflicts

Gradually move from incomplete/vague plans to complete, correct plans

Backtrack if an open condition is unachievable or if a conflict is unresolvable

Chapter 11 10

POP algorithm sketch


```
\begin{aligned} & \textbf{function POP}(initial, goal, operators) \ \textbf{returns} \ plan \\ & plan \leftarrow \text{Make-Minimal-Plan}(initial, goal) \\ & \textbf{loop do} \\ & \textbf{if Solution?}(plan) \ \textbf{then return} \ plan \\ & S_{need}, \ c \leftarrow \text{Select-Subgoal}(plan) \\ & \text{Choose-Operator}(plan, operators, S_{need}, c) \\ & \text{RESOLVE-Threats}(plan) \\ & \textbf{end} \end{aligned}
```

POP algorithm contd.

ter 11 11 Chapter 11 12

Clobbering and promotion/demotion

A clobberer is a potentially intervening step that destroys the condition achieved by a causal link. E.g., Go(Home) clobbers At(Supermarket):

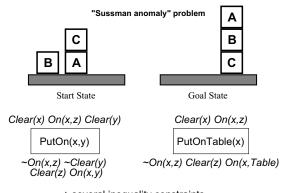
Chapter 11 13

Properties of POP

Nondeterministic algorithm: backtracks at choice points on failure:

- choice of S_{add} to achieve S_{need}
- $\boldsymbol{\mathsf{-}}$ choice of demotion or promotion for clobberer
- selection of S_{need} is irrevocable

POP is sound, complete, and systematic (no repetition)


Extensions for disjunction, universals, negation, conditionals

Can be made efficient with good heuristics derived from problem description

Particularly good for problems with many loosely related subgoals

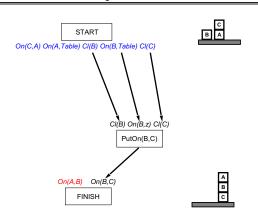
Chapter 11 14

+ several inequality constraints

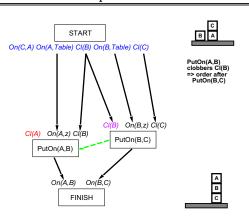
Chapter 11 1

Example contd.

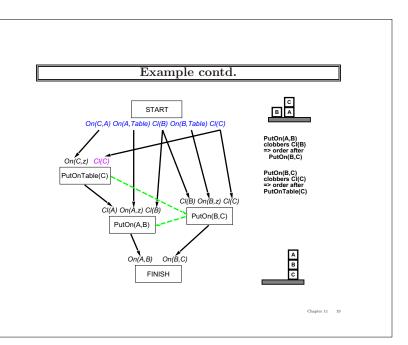
START
On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)



On(A,B) On(B,C)
FINISH


Chapter 11

Example contd.



Chapter 11 1

Example contd.

Chapter 11 1

