Outline

UNCERTAINTY

Chapter 13

♦ Uncertainty

♦ Probability

♦ Syntax and Semantics

- ♦ Inference
- ♦ Independence and Bayes' Rule

Uncertainty

Let action A_t = leave for airport t minutes before flight Will A_t get me there on time?

Problems:

- 1) partial observability (road state, other drivers' plans, etc.)
- 2) noisy sensors (KCBS traffic reports)
- 3) uncertainty in action outcomes (flat tire, etc.)
- 4) immense complexity of modelling and predicting traffic

Hence a purely logical approach either

- 1) risks falsehood: " A_{25} will get me there on time"
- or 2) leads to conclusions that are too weak for decision making: " A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

 $(A_{1440} \text{ might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)$

Chapter 13 3

Chapter 13 1

Probability

Probabilistic assertions summarize effects of laziness: failure to enumerate exceptions, qualifications, etc. ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability: Probabilities relate propositions to one's own state of knowledge e.g., $P(A_{25}|$ no reported accidents) = 0.06

These are **not** claims of a "probabilistic tendency" in the current situation (but might be learned from past experience of similar situations)

Probabilities of propositions change with new evidence: e.g., $P(A_{25}|{\rm no}\ {\rm reported}\ {\rm accidents},\ 5\ {\rm a.m.})=0.15$

(Analogous to logical entailment status $KB \models \alpha$, not truth.)

Methods for handling uncertainty

Default or nonmonotonic logic: Assume my car does not have a flat tire Assume A_{25} works unless contradicted by evidence Issues: What assumptions are reasonable? How to handle contradiction?

Rules with fudge factors:

 $A_{25} \mapsto_{0.3} AtAirportOnTime$ Sprinkler $\mapsto_{0.99} WetGrass$ $WetGrass \mapsto_{0.7} Rain$

 $\label{eq:selection} \mbox{Issues: Problems with combination, e.g., } Sprinkler \mbox{ causes } Rain \ref{eq:selection} \mbox{ causes$

Probability Given the available evidence, A_{25} will get me there on time with probability 0.04Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

(Fuzzy logic handles degree of truth NOT uncertainty e.g., WetGrass is true to degree 0.2)

Chapter 13 4

Chapter 13 2

Making decisions under uncertainty

Suppose I believe the following:

$$\begin{split} P(A_{25} \text{ gets me there on time}|\ldots) &= 0.04 \\ P(A_{90} \text{ gets me there on time}|\ldots) &= 0.70 \\ P(A_{120} \text{ gets me there on time}|\ldots) &= 0.95 \\ P(A_{1440} \text{ gets me there on time}|\ldots) &= 0.9999 \end{split}$$

Which action to choose?

Depends on my preferences for missing flight vs. airport cuisine, etc.

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory

Probability basics

Begin with a set Ω —the sample space e.g., 6 possible rolls of a die. $\omega \in \Omega$ is a sample point/possible world/atomic event

A probability space or probability model is a sample space with an assignment $P(\omega)$ for every $\omega\in\Omega$ s.t. $\begin{array}{c} 0\leq P(\omega)\leq 1\\ \Sigma_\omega P(\omega)=1 \end{array}$

e.g., P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6.

An event A is any subset of Ω

$$P(A) = \sum_{\{\omega \in A\}} P(\omega)$$

E.g., P(die roll < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2

Random variables

A random variable is a function from sample points to some range, e.g., the reals or Booleans e.g., Odd(1) = true.

P induces a probability distribution for any r.v. X:

 $P(X = x_i) = \sum_{\{\omega: X(\omega) = x_i\}} P(\omega)$

e.g., P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2

Propositions

Think of a proposition as the event (set of sample points) where the proposition is true

Given Boolean random variables A and B: event a= set of sample points where $A(\omega)=true$ event $\neg a=$ set of sample points where $A(\omega)=false$ event $a \wedge b=$ points where $A(\omega)=true$ and $B(\omega)=true$

Often in AI applications, the sample points are **defined** by the values of a set of random variables, i.e., the sample space is the Cartesian product of the ranges of the variables

With Boolean variables, sample point = propositional logic model e.g., A = true, B = false, or $a \land \neg b$. Proposition = disjunction of atomic events in which it is true e.g., $(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$ $\Rightarrow P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b)$

Chapter 13 9

Chapter 13 7

Syntax for propositions

Propositional or Boolean random variables e.g., Cavity (do I have a cavity?) Cavity=true is a proposition, also written cavity

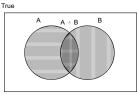
- Discrete random variables (finite or infinite) e.g., Weather is one of $\langle sunny, rain, cloudy, snow \rangle$ Weather = rain is a proposition Values must be exhaustive and mutually exclusive
- Continuous random variables (bounded or unbounded) e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions

Why use probability?

The definitions imply that certain logically related events must have related probabilities

E.g., $P(a \lor b) = P(a) + P(b) - P(a \land b)$



de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.

Chapter 13 10

Chapter 13 8

Prior probability

Prior or unconditional probabilities of propositions e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72correspond to belief prior to arrival of any (new) evidence

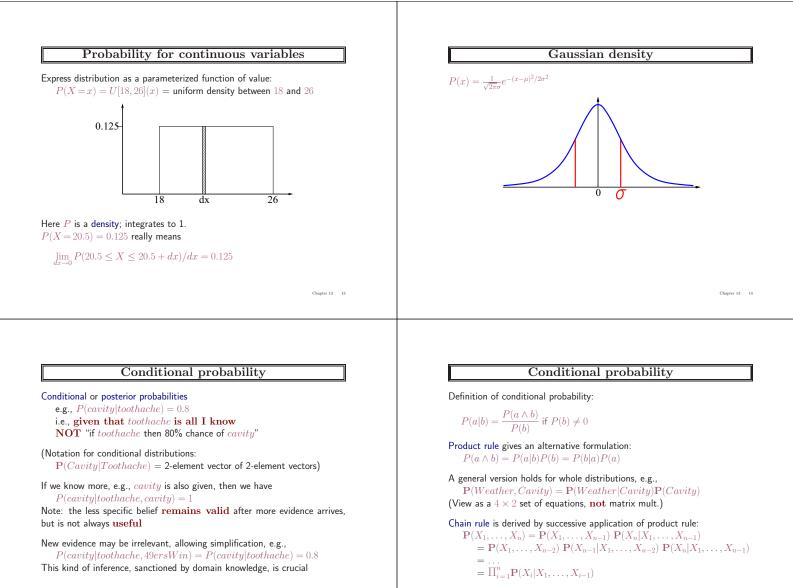
Probability distribution gives values for all possible assignments: $P(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle$ (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point) $P(Weather, Cavity) = a \ 4 \times 2$ matrix of values:

Every question about a domain can be answered by the joint distribution because every event is a sum of sample points

Chapter 13 11

Chapter 13 12



Chapter 13 15

Inference by enumeration						
Start with the	tart with the joint distribution:					
		toothache		\neg toothache		
		catch	\neg catch	catch	\neg catch	
	cavity	.108	.012	.072	.008	
	\neg cavity	.016	.064	.144	.576	

For any proposition $\phi,$ sum the atomic events where it is true: $P(\phi)=\Sigma_{\omega\omega\models\phi}P(\omega)$

Inference by enumeration

Start with the joint distribution:

	tool	thache	⊐ too	othache
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition $\phi,$ sum the atomic events where it is true: $P(\phi) = \sum_{\omega: \omega \models \phi} P(\omega)$

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Chapter 13 16

Inference by enumeration

Start with the joint distribution:

	tool	thache	\neg toothache		
	catch	\neg catch	catch	\neg catch	
cavity	.108	.012	.072	.008	
\neg cavity	.016	.064	.144	.576	

For any proposition $\phi,$ sum the atomic events where it is true: $P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$

 $P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$

Inference by enumeration

Start with the joint distribution:

	tool	thache	\neg toothache		
	catch	\neg catch	catch	\neg catch	
cavity	.108	.012	.072	.008	
\neg cavity	.016	.064	.144	.576	

Can also compute conditional probabilities:

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)} \\ = \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

Chapter 13 20

		Nor	maliz	at	tion	
Γ		toothache		⊐ toothache		
		catch	$\neg catc$	h	catch	\neg catch
	cavity	.108	.012		.072	.008
-	¬ cavity	.016	.064		.144	.576

Denominator can be viewed as a normalization constant α

 $\mathbf{P}(Cavity|toothache) = \alpha \mathbf{P}(Cavity, toothache)$

 $= \alpha \left[\mathbf{P}(Cavity, toothache, catch) + \mathbf{P}(Cavity, toothache, \neg catch) \right]$

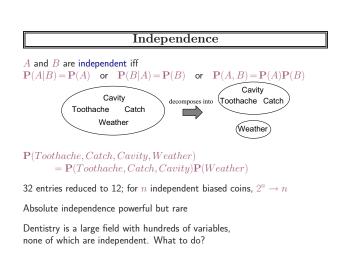
 $= \alpha [\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle]$

 $= \alpha \langle 0.12, 0.08 \rangle = \langle 0.6, 0.4 \rangle$

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Chapter 13 21

Chapter 13 19



Chapter 13 23

Inference by enumeration, contd.

Let X be all the variables. Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables E

Let the hidden variables be $\mathbf{H}=\mathbf{X}-\mathbf{Y}-\mathbf{E}$

Then the required summation of joint entries is done by summing out the hidden variables:

 $\mathbf{P}(\mathbf{Y}|\mathbf{E} = \mathbf{e}) = \alpha \mathbf{P}(\mathbf{Y}, \mathbf{E} = \mathbf{e}) = \alpha \Sigma_{\mathbf{h}} \mathbf{P}(\mathbf{Y}, \mathbf{E} = \mathbf{e}, \mathbf{H} = \mathbf{h})$

The terms in the summation are joint entries because $\mathbf{Y},\,\mathbf{E},$ and \mathbf{H} together exhaust the set of random variables

Obvious problems:

- 1) Worst-case time complexity $O(d^n)$ where d is the largest arity
- 2) Space complexity $O(d^n)$ to store the joint distribution
- 3) How to find the numbers for $O(d^n)$ entries???

Chapter 13 22

Chapter 13 24

Conditional independence

 $\mathbf{P}(Toothache, Cavity, Catch)$ has $2^3 - 1 = 7$ independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

```
The same independence holds if I haven't got a cavity:

(2) P(catch|toothache, \neg cavity) = P(catch|\neg cavity)
```

```
Catch is conditionally independent of Toothache given Cavity:

P(Catch|Toothache, Cavity) = P(Catch|Cavity)
```

Equivalent statements:

$$\begin{split} \mathbf{P}(Toothache|Catch, Cavity) &= \mathbf{P}(Toothache|Cavity) \\ \mathbf{P}(Toothache, Catch|Cavity) &= \mathbf{P}(Toothache|Cavity) \mathbf{P}(Catch|Cavity) \end{split}$$

Conditional independence contd.

Write out full joint distribution using chain rule:

- $\mathbf{P}(Toothache, Catch, Cavity)$
- $= \mathbf{P}(Toothache|Catch, Cavity) \mathbf{P}(Catch, Cavity)$
- $= \mathbf{P}(Toothache|Catch,Cavity) \mathbf{P}(Catch|Cavity) \mathbf{P}(Cavity)$
- $= \mathbf{P}(Toothache|Cavity) \mathbf{P}(Catch|Cavity) \mathbf{P}(Cavity)$

I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust form of knowledge about uncertain environments. Bayes' Rule

Product rule $P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$

Bayes' rule
$$P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

or in distribution form

 \Rightarrow

$$\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha \mathbf{P}(X|Y)\mathbf{P}(Y)$$

Useful for assessing diagnostic probability from causal probability:

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

E.g., let ${\cal M}$ be meningitis, ${\cal S}$ be stiff neck:

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0003$$

Note: posterior probability of meningitis still very small!

Bayes' Rule and conditional independence

 $\mathbf{P}(Cavity|toothache \land catch)$

- $= \alpha \mathbf{P}(toothache \wedge catch|Cavity) \mathbf{P}(Cavity)$
- $= \ \alpha \, \mathbf{P}(toothache|Cavity) \mathbf{P}(catch|Cavity) \mathbf{P}(Cavity)$

This is an example of a naive Bayes model:

 $\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause) \prod_i \mathbf{P}(Effect_i | Cause)$

Total number of parameters is **linear** in n

Chapter 13 27

Chapter 13 25

Specifying the probability model

The full joint distribution is $\mathbf{P}(P_{1,1},\ldots,P_{4,4},B_{1,1},B_{1,2},B_{2,1})$

Apply product rule: $\mathbf{P}(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, \dots, P_{4,4}) \mathbf{P}(P_{1,1}, \dots, P_{4,4})$

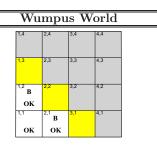
(Do it this way to get P(Effect|Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

$$\mathbf{P}(P_{1,1},\ldots,P_{4,4}) = \prod_{i,j=1,1}^{4,4} \mathbf{P}(P_{i,j}) = 0.2^n \times 0.8^{16-n}$$

for n pits.



 $P_{ij} = true \text{ iff } [i, j] \text{ contains a pit}$

 $B_{ij} = true \text{ iff } [i, j] \text{ is breezy}$ Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model

Chapter 13 28

Chapter 13 2f

Observations and query

We know the following facts: $b = \neg b_{1,1} \land b_{1,2} \land b_{2,1}$

 $known = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1}$

Query is $\mathbf{P}(P_{1,3}|known, b)$

Define $Unknown = P_{ij}s$ other than $P_{1,3}$ and Known

For inference by enumeration, we have

 $\mathbf{P}(P_{1,3}|known, b) = \alpha \Sigma_{unknown} \mathbf{P}(P_{1,3}, unknown, known, b)$

Grows exponentially with number of squares!

