BAYESIAN NETWORKS

Chapter 14.1-3

Chapter 14.1–3 1

Outline

- \diamondsuit Syntax
- \diamond Semantics
- $\diamondsuit~$ Parameterized distributions

Bayesian networks

A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax:

- a set of nodes, one per variable
- a directed, acyclic graph (link pprox "directly influences")
- a conditional distribution for each node given its parents:

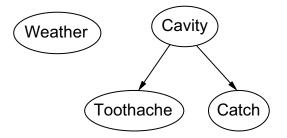
 $\mathbf{P}(X_i | Parents(X_i))$

In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values

Chapter 14.1–3 3

Example

Topology of network encodes conditional independence assertions:



Weather is independent of the other variables

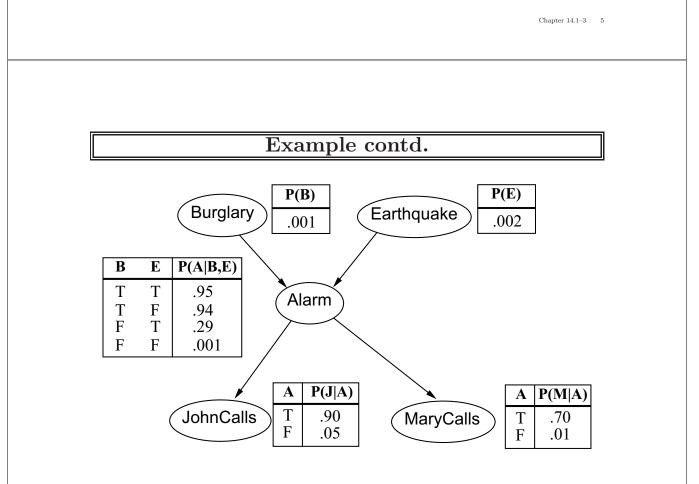
Toothache and Catch are conditionally independent given Cavity

Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: *Burglar*, *Earthquake*, *Alarm*, *JohnCalls*, *MaryCalls* Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call



Compactness

A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values

Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1 - p)

If each variable has no more than k parents, the complete network requires $O(n\cdot 2^k)$ numbers

I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution

For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. $2^5 - 1 = 31$)

E

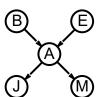
Global semantics

Global semantics defines the full joint distribution as the product of the local conditional distributions:

 $P(x_1,\ldots,x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$

e.g., $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$

=



Global semantics

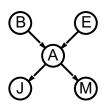
"Global" semantics defines the full joint distribution as the product of the local conditional distributions:

 $P(x_1,\ldots,x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$

e.g.,
$$P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$$

- $= P(j|a)P(m|a)P(a|\neg b, \neg e)P(\neg b)P(\neg e)$
- $= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$

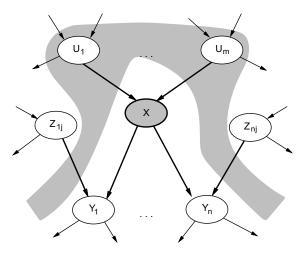
 ≈ 0.00063



Chapter 14.1–3 9

Local semantics

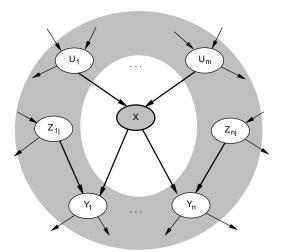
Local semantics: each node is conditionally independent of its nondescendants given its parents



Theorem: Local semantics \Leftrightarrow global semantics

Markov blanket

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents



Chapter 14.1–3 11

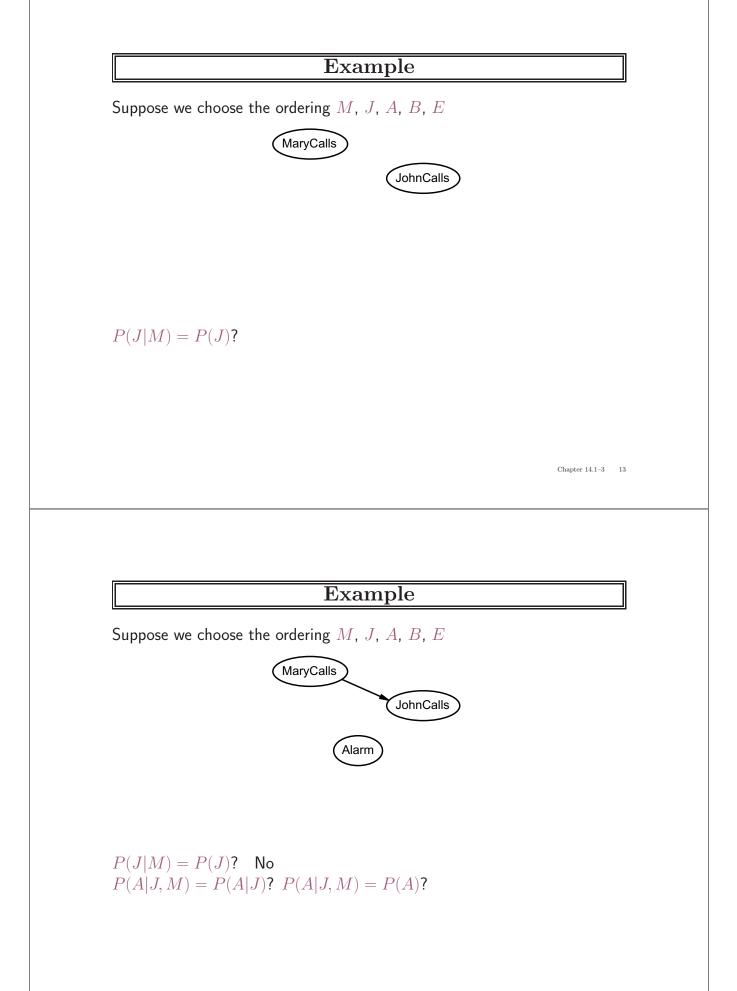
Constructing Bayesian networks

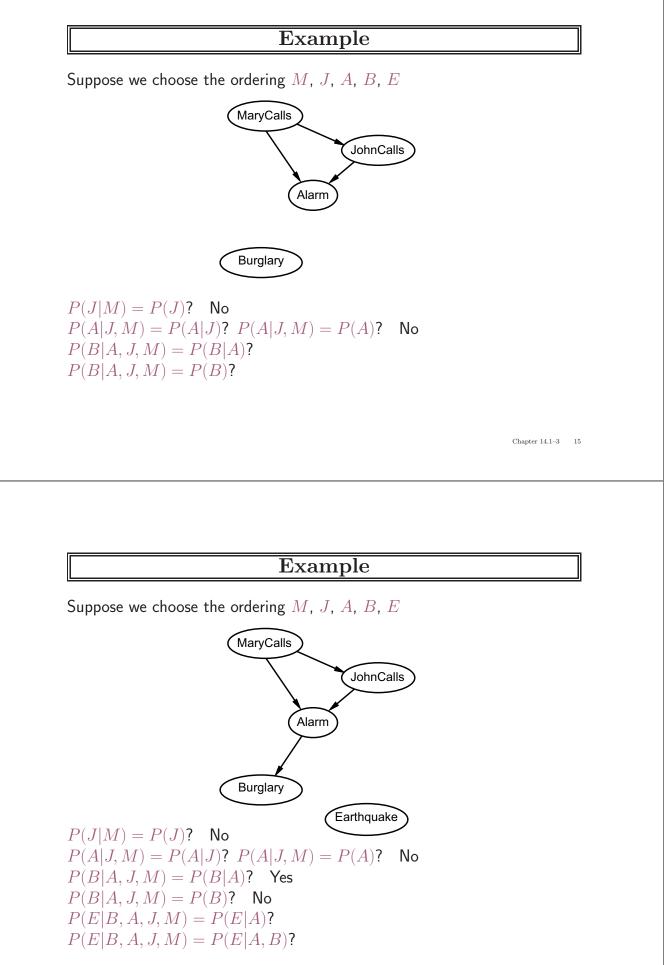
Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

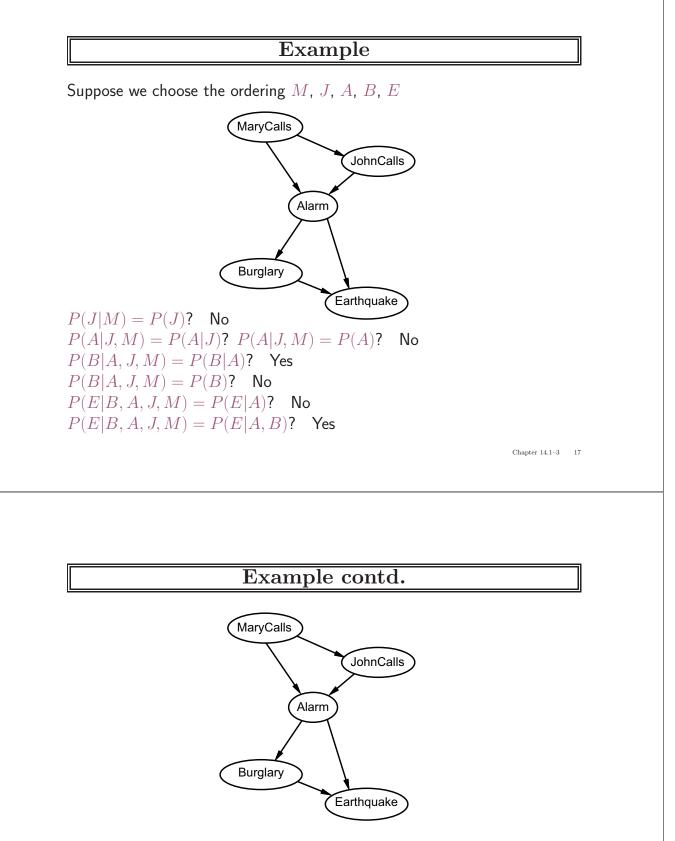
- 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For i = 1 to nadd X_i to the network select parents from X_1, \ldots, X_{i-1} such that $\mathbf{P}(X_i | Parents(X_i)) = \mathbf{P}(X_i | X_1, \ldots, X_{i-1})$

This choice of parents guarantees the global semantics:

$$\mathbf{P}(X_1, \dots, X_n) = \prod_{i=1}^n \mathbf{P}(X_i | X_1, \dots, X_{i-1}) \quad \text{(chain rule)} \\ = \prod_{i=1}^n \mathbf{P}(X_i | Parents(X_i)) \quad \text{(by construction)}$$





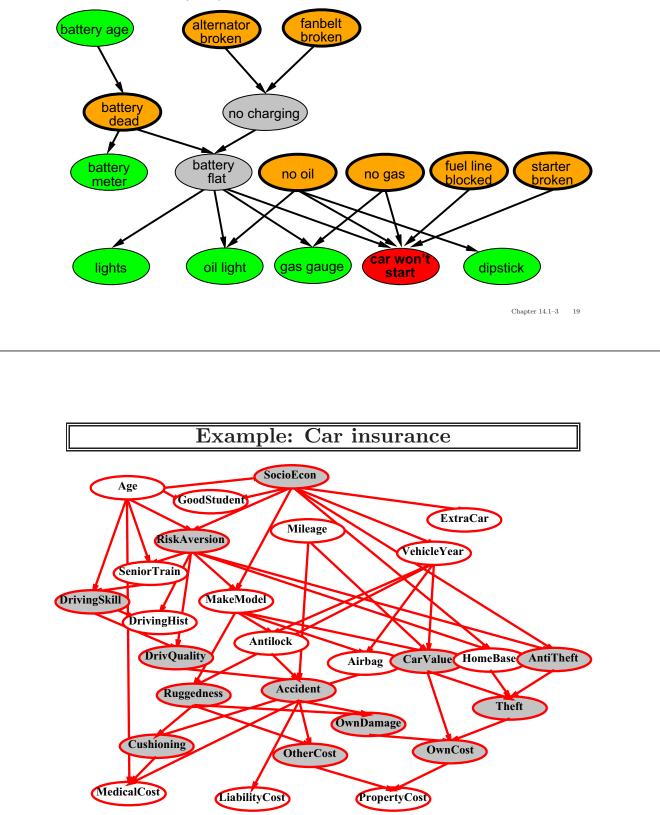


Deciding conditional independence is hard in noncausal directions (Causal models and conditional independence seem hardwired for humans!) Assessing conditional probabilities is hard in noncausal directions Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed

Example: Car diagnosis

Initial evidence: car won't start

Testable variables (green), "broken, so fix it" variables (orange) Hidden variables (gray) ensure sparse structure, reduce parameters



Compact conditional distributions

CPT grows exponentially with number of parents CPT becomes infinite with continuous-valued parent or child Solution: canonical distributions that are defined compactly Deterministic nodes are the simplest case: X = f(Parents(X)) for some function fE.g., Boolean functions NorthAmerican \Leftrightarrow Canadian $\lor US \lor Mexican$ E.g., numerical relationships among continuous variables $\frac{\partial Level}{\partial t} =$ inflow + precipitation - outflow - evaporation

Chapter 14.1–3 21

Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes

- 1) Parents $U_1 \dots U_k$ include all causes (can add leak node)
- 2) Independent failure probability q_i for each cause alone

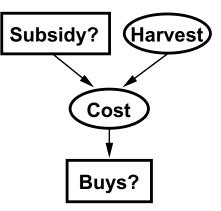
 $\Rightarrow P(X|U_1 \dots U_j, \neg U_{j+1} \dots \neg U_k) = 1 - \prod_{i=1}^j q_i$

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
Т	F	Т	0.94	$0.06 = 0.6 \times 0.1$
Т	Т	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Number of parameters **linear** in number of parents

Hybrid (discrete+continuous) networks

Discrete (*Subsidy*? and *Buys*?); continuous (*Harvest* and *Cost*)



Option 1: discretization—possibly large errors, large CPTs Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., Cost)

2) Discrete variable, continuous parents (e.g., Buys?)

Chapter 14.1–3 23

Continuous child variables

Need one conditional density function for child variable given continuous parents, for each possible assignment to discrete parents

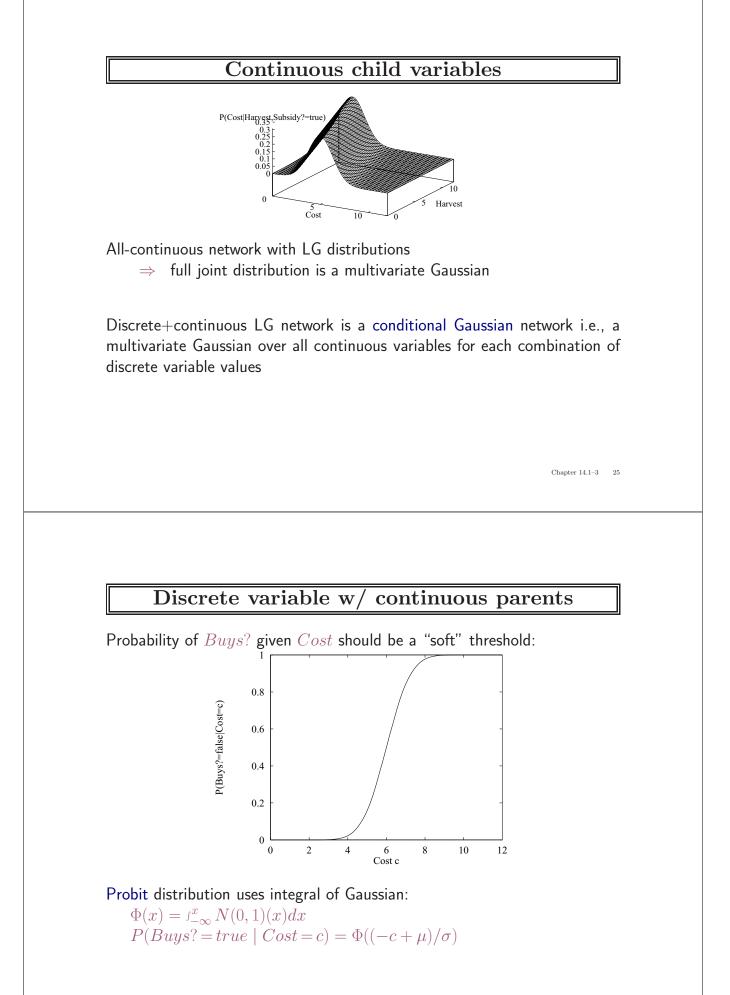
Most common is the linear Gaussian model, e.g.,:

$$P(Cost = c | Harvest = h, Subsidy? = true)$$

= $N(a_th + b_t, \sigma_t)(c)$
= $\frac{1}{\sigma_t \sqrt{2\pi}} exp\left(-\frac{1}{2}\left(\frac{c - (a_th + b_t)}{\sigma_t}\right)^2\right)$

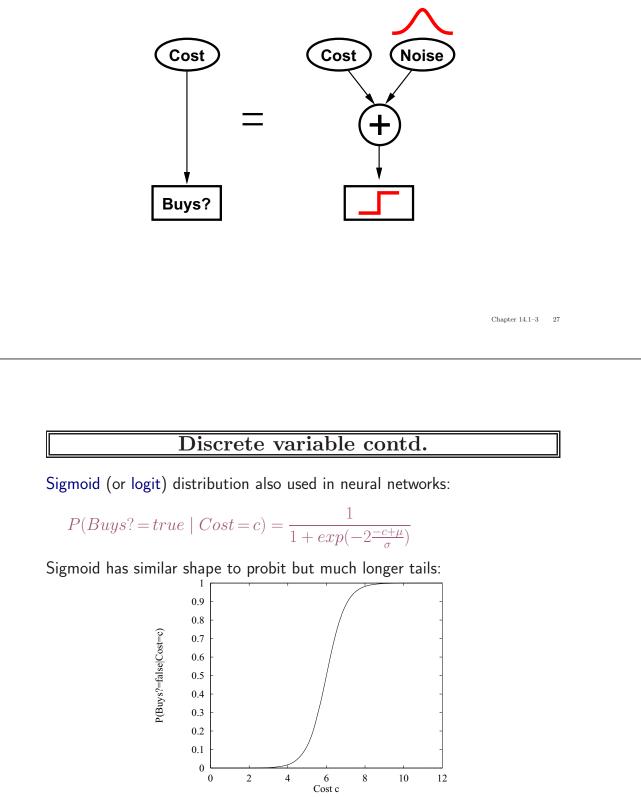
Mean Cost varies linearly with Harvest, variance is fixed

Linear variation is unreasonable over the full range but works OK if the **likely** range of *Harvest* is narrow



1. It's sort of the right shape

2. Can view as hard threshold whose location is subject to noise



Summary

Bayes nets provide a natural representation for (causally induced) conditional independence

Topology + CPTs = compact representation of joint distribution

Generally easy for (non)experts to construct

Canonical distributions (e.g., noisy-OR) = compact representation of CPTs

Continuous variables \Rightarrow parameterized distributions (e.g., linear Gaussian)

Chapter 14.1–3 29