Outline

Bayesian networks

\diamond Syntax
\diamond Semantics
\diamond Parameterized distributions

Chapter 14.1-3

Bayesian networks
A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link \approx "directly influences")
a conditional distribution for each node given its parents: $\mathbf{P}\left(X_{i} \mid\right.$ Parents $\left.\left(X_{i}\right)\right)$

In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_{i} for each combination of parent values

Example
Topology of network encodes conditional independence assertions:

Weather is independent of the other variables
Toothache and Catch are conditionally independent given Cavity

Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

If each variable has no more than k parents, the complete network requires $O\left(n \cdot 2^{k}\right)$ numbers
I.e., grows linearly with n, vs. $O\left(2^{n}\right)$ for the full joint distribution

For burglary net, $1+1+4+2+2=10$ numbers (vs. $2^{5}-1=31$)

Global semantics

Global semantics defines the full joint distribution as the product of the local conditional distributions:

$$
\begin{aligned}
& \quad P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right) \\
& \text { e.g., } P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)
\end{aligned}
$$

Global semantics
"Global" semantics defines the full joint distribution as the product of the local conditional distributions:

$$
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

e.g., $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$
$=P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)$
$=0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$
≈ 0.00063

Markov blanket

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents

Constructing Bayesian networks

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

1. Choose an ordering of variables X_{1}, \ldots, X_{n}
2. For $i=1$ to n
add X_{i} to the network
select parents from X_{1}, \ldots, X_{i-1} such that $\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=\mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)$

This choice of parents guarantees the global semantics:

$$
\begin{aligned}
\mathrm{P}\left(X_{1}, \ldots, X_{n}\right) & =\prod_{i=1}^{n} \mathrm{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \quad \text { (chain rule) } \\
& =\prod_{i=1}^{n} \mathrm{P}\left(X_{i} \mid \text { Parents }\left(X_{i}\right)\right) \quad \text { (by construction) }
\end{aligned}
$$

