
1

Code Generation I
Stack machines
The MIPS assembly language
A simple source language
Stack-machine implementation of the
simple language
Readings: 9.1-9.7

Stack Machines
A simple evaluation model
No variables or registers
A stack of values for intermediate results
Each instruction:

Takes its operands from the top of the stack
Removes those operands from the stack
Computes the required operation on them
Pushes the result on the stack

2

Example of Stack Machine
Operation

The addition operation on a stack machine

5
7
9
…

5

7

9
…

pop

⊕

add

12
9
…

push

Example of a Stack Machine
Program

Consider two instructions
push i - place the integer i on top of the stack
add - pop two elements, add them and put

the result back on the stack

A program to compute 7 + 5:
push 7
push 5
add

3

Why Use a Stack Machine ?
Each operation takes operands from the
same place and puts results in the same
place

This means a uniform compilation
scheme

And therefore a simpler compiler

Why Use a Stack Machine ?
Location of the operands is implicit

Always on the top of the stack

No need to specify operands explicitly
No need to specify the location of the result
Instruction “add” as opposed to “add r1, r2”

⇒ Smaller encoding of instructions
⇒ More compact programs

This is one reason why Java Bytecodes use a
stack evaluation model

4

Optimizing the Stack Machine
The add instruction does 3 memory
operations

Two reads and one write to the stack
The top of the stack is frequently accessed

Idea: keep the top of the stack in a register
(called accumulator)

Register accesses are faster

The “add” instruction is now
acc ← acc + top_of_stack

Only one memory operation!

Stack Machine with Accumulator
Invariants

The result of computing an expression
is always in the accumulator
For an operation op(e1,…,en) push the
accumulator on the stack after
computing each of e1,…,en-1

After the operation pop n-1 values
After computing an expression the stack
is as before

5

Stack Machine with Accumulator.
Example

Compute 7 + 5 using an accumulator

…

acc

stack

5

7
…

acc ← 5

12

…

⊕

acc ← acc + top_of_stack
pop

…

7

acc ← 7
push acc

7

A Bigger Example: 3 + (7 + 5)
Code Acc Stack
acc ← 3 3 <init>
push acc 3 3, <init>
acc ← 7 7 3, <init>
push acc 7 7, 3, <init>
acc ← 5 5 7, 3, <init>
acc ← acc + top_of_stack 12 7, 3, <init>
pop 12 3, <init>
acc ← acc + top_of_stack 15 3, <init>
pop 15 <init>

6

Notes
It is very important that the stack is
preserved across the evaluation of a
subexpression

Stack before the evaluation of 7 + 5 is
3, <init>
Stack after the evaluation of 7 + 5 is
3, <init>
The first operand is on top of the stack

From Stack Machines to MIPS
The compiler generates code for a stack
machine with accumulator

We want to run the resulting code on
the MIPS processor (or simulator)

We simulate stack machine instructions
using MIPS instructions and registers

7

Simulating a Stack Machine…
The accumulator is kept in MIPS register $a0
The stack is kept in memory
The stack grows towards lower addresses

Standard convention on the MIPS architecture

The address of the next location on the stack
is kept in MIPS register $sp

The top of the stack is at address $sp + 4

MIPS Assembly
MIPS architecture

Prototypical Reduced Instruction Set
Computer (RISC) architecture
Arithmetic operations use registers for
operands and results
Must use load and store instructions to use
operands and results in memory
32 general purpose registers (32 bits each)

We will use $sp, $a0 and $t1 (a temporary
register)

8

A Sample of MIPS Instructions
lw reg1 offset(reg2)

Load 32-bit word from address reg2 + offset into reg1

add reg1 reg2 reg3
reg1 ← reg2 + reg3

sw reg1 offset(reg2)
Store 32-bit word in reg1 at address reg2 + offset

addiu reg1 reg2 imm
reg1 ← reg2 + imm
“u” means overflow is not checked

li reg imm
reg ← imm

MIPS Assembly. Example.
The stack-machine code for 7 + 5 in MIPS:

acc ← 7
push acc

acc ← 5
acc ← acc + top_of_stack

pop

li $a0 7
sw $a0 0($sp)
addiu $sp $sp -4
li $a0 5
lw $t1 4($sp)
add $a0 $a0 $t1
addiu $sp $sp 4

• We now generalize this to a simple language…

9

A Small Language
A language with integers and integer
operations

P → D; P | D
D → def id(ARGS) = E;
ARGS → id, ARGS | id
E → int | id | if E1 = E2 then E3 else E4

| E1 + E2 | E1 – E2 | id(E1,…,En)

A Small Language (Cont.)
The first function definition f is the “main”
routine
Running the program on input i means
computing f(i)
Program for computing the Fibonacci
numbers:

def fib(x) = if x = 1 then 0 else
if x = 2 then 1 else

fib(x - 1) + fib(x – 2)

10

Code Generation Strategy
For each expression e we generate
MIPS code that:

Computes the value of e in $a0
Preserves $sp and the contents of the
stack

We define a code generation function
cgen(e) whose result is the code
generated for e

Code Generation for Constants
The code to evaluate a constant simply
copies it into the accumulator:

cgen(i) = li $a0 i

Note that this also preserves the stack,
as required

11

Code Generation for Add
cgen(e1 + e2) =

cgen(e1)
sw $a0 0($sp)
addiu $sp $sp -4
cgen(e2)
lw $t1 4($sp)
add $a0 $t1 $a0
addiu $sp $sp 4

Possible optimization: Put the result of e1
directly in register $t1 ?

Code Generation for Add. Wrong!
Optimization: Put the result of e1 directly in
$t1?

cgen(e1 + e2) =
cgen(e1)
move $t1 $a0
cgen(e2)
add $a0 $t1 $a0

Try to generate code for : 3 + (7 + 5)

12

Code Generation Notes
The code for + is a template with
“holes” for code for evaluating e1 and e2

Stack machine code generation is
recursive
Code for e1 + e2 consists of code for e1
and e2 glued together
Code generation can be written as a
recursive-descent of the AST

At least for expressions

Code Generation for Sub and
Constants

New instruction: sub reg1 reg2 reg3
Implements reg1 ← reg2 - reg3

cgen(e1 - e2) =
cgen(e1)
sw $a0 0($sp)
addiu $sp $sp -4
cgen(e2)
lw $t1 4($sp)
sub $a0 $t1 $a0
addiu $sp $sp 4

13

Code Generation for Conditional
We need flow control instructions

New instruction: beq reg1 reg2 label
Branch to label if reg1 = reg2

New instruction: b label
Unconditional jump to label

Code Generation for If (Cont.)

cgen(if e1 = e2 then e3 else e4) =
cgen(e1)
sw $a0 0($sp)
addiu $sp $sp -4
cgen(e2)
lw $t1 4($sp)
addiu $sp $sp 4
beq $a0 $t1 true_branch

false_branch:
cgen(e4)
b end_if

true_branch:
cgen(e3)

end_if:

14

The Activation Record
Code for function calls and function
definitions depends on the layout of the
activation record
A very simple AR suffices for this language:

The result is always in the accumulator
No need to store the result in the AR

The activation record holds actual parameters
For f(x1,…,xn) push xn,…,x1 on the stack
These are the only variables in this language

The Activation Record (Cont.)
The stack discipline guarantees that on
function exit $sp is the same as it was on
function entry

No need for a control link

We need the return address
It’s handy to have a pointer to the current
activation

This pointer lives in register $fp (frame pointer)
Reason for frame pointer will be clear shortly

15

The Activation Record
Summary: For this language, an AR with the
caller’s frame pointer, the actual parameters,
and the return address suffices
Picture: Consider a call to f(x,y), The AR will
be:

y
x

old fp

SP

FP

AR of f

Code Generation for Function Call
The calling sequence is the instructions
(of both caller and callee) to set up a
function invocation
New instruction: jal label

Jump to label, save address of next
instruction in $ra
On other architectures the return address
is stored on the stack by the “call”
instruction

16

Code Generation for Function Call
(Cont.)

cgen(f(e1,…,en)) =
sw $fp 0($sp)
addiu $sp $sp -4
cgen(en)
sw $a0 0($sp)
addiu $sp $sp -4
…
cgen(e1)
sw $a0 0($sp)
addiu $sp $sp -4
jal f_entry

• The caller saves its value
of the frame pointer

• Then it saves the actual
parameters in reverse
order

• The caller saves the
return address in
register $ra

• The AR so far is 4*n+4
bytes long

Code Generation for Function
Definition

New instruction: jr reg
Jump to address in register reg

cgen(def f(x1,…,xn) = e) =
move $fp $sp
sw $ra 0($sp)
addiu $sp $sp -4
cgen(e)
lw $ra 4($sp)
addiu $sp $sp z
lw $fp 0($sp)
jr $ra

• Note: The frame pointer
points to the top, not
bottom of the frame

• The callee pops the return
address, the actual
arguments and the saved
value of the frame pointer

• z = 4*n + 8

17

Calling Sequence. Example for
f(x,y).

Before call On entry Before exit After call

SP

FP

y
x

old fp

SP

FP

SP

FP

SP
return

y
x

old fp

FP

Code Generation for Variables
Variable references are the last construct
The “variables” of a function are just its
parameters

They are all in the AR
Pushed by the caller

Problem: Because the stack grows when
intermediate results are saved, the variables
are not at a fixed offset from $sp

18

Code Generation for Variables
(Cont.)

Solution: use a frame pointer
Always points to the return address on the stack
Since it does not move it can be used to find the
variables

Let xi be the ith (i = 1,…,n) formal parameter
of the function for which code is being
generated

cgen(xi) = lw $a0 z($fp) (z = 4*i)

Code Generation for Variables
(Cont.)

Example: For a function def f(x,y) = e
the activation and frame pointer are set
up as follows:

y
x

return

old fp
• X is at fp + 4
• Y is at fp + 8

FP

SP

19

Summary
The activation record must be designed
together with the code generator
Code generation can be done by recursive
traversal of the AST
Production compilers do different things

Emphasis is on keeping values (esp. current stack
frame) in registers
Intermediate results are laid out in the AR, not
pushed and popped from the stack

Next time: code generation for objects

