
1

CS 5641 Compiler Design

Rich Maclin
rmaclin@d.umn.edu

319 Heller Hall

Acknowledgements
Notes derived from:

Susan Horwitz (UW-Madison)
Ras Bodik (UW-Madison)
Alex Aiken (Berkeley)
George Necula (Berkeley)

2

Readings
Chapter 1
Chapter 2 (optional) – may want to
review this chapter periodically

Levels of Programming
Languages

Machine language
Assembly language
High-level languages

C, C++, LISP, Pascal, Prolog, Scheme

Natural language
English

3

Programming Paradigms
Imperative languages

Computation as a series of actions

Object-oriented programming
Computation organized around objects and
functions that can be applied to objects

Functional programming
Language as a set of (extendable) functions

Logic programming
Programs as defining what a solution look like,
letting the machine find a solution

Tools for Programming
Interpreter

Commands in a high level language are
translated to machine terms as they are
encountered

Compiler
Program translated in its entirety at one
time to a corresponding machine language
program

Hybrids

4

Parts of a Compiler

Parser

Scanner

Semantic
Analyzer

Intermediate
Code Generator

Optimizer

Code Generator

Source Code

Object Code

Scanner
Translates an input sequence of characters into a
sequence of tokens
Tokens in English: word (junk), capitalized word
(Program), period (.)
Sample input: Dogs like chocolate.

Tokens: capitalized word (Dogs)
word (like)
word (chocolate)
period

Scanners can note illegal characters
Some scanners also do limit checks on integers

5

Program Tokens
Sample input:

int main () {
int a = 0;
cout << a << endl;
return 1;

}

Tokens:
Identifier (int)
Identifier (main)
Left parenthesis
Right parenthesis
Left curly brace
Identifier (int)

Equals
Integer (0)
Semi-colon
Identifier (cout)
Double left angle bracket
Identifier (a)
Double left angle bracket
Identifier (endl)
Semi-colon
Reserved word (return)
Integer (1)
Semi-colon
Right curly brace

Parser
Groups tokens together to form
grammatical phrases

Builds a structure to capture the program
(abstract syntax tree)

Interior nodes – operators
Children - operands

Example: a = a * 5;
=

a

a

*

5

6

Parser Errors
Parsers generally understand programs
as a series of statements (think
sentences)
Errors generated when it cannot
understand your sentence
Example: a = * 5;

Something missing!

Semantic Analyzer
Checks for non-syntactic errors

Example: type errors

May change or annotate the abstract syntax tree
For example, many arithmetic operators apply only to
operands of one type, if two compatible types are mixed
semantic analyzer may convert
Example: a = 3.0 * 5;

=

a

3.0

*

5

=

a

3.0

*

int_to_double

5

7

Intermediate Code Generator
Translates from syntax tree to some
intermediate code

One possibility – 3-address code,
statements with at most 3 operands
Example: a = initial + rate * 60;
Translation:
Temp1 = int_to_double(60)
Temp2 = rate * Temp1
Temp3 = initial + Temp2
a = Temp3

Optimizer
Improves code generated by intermediate
code generator

Usually for speed, sometimes for size
Example (from previous)

Initial
Temp1 = int_to_double(60)
Temp2 = rate * Temp1
Temp3 = initial + Temp2
a = Temp3

Improved
Temp2 = rate * 60.0
a = initial + Temp2

Convert at compile time

No need to store, copy Temp3

8

Code Generator
Generates the object code
Intermediate instructions are translated into a
sequence of target code instructions
Example:
LOADF rate, R1
MULF #60.0, R1
LOADF initial, R2
ADDF R2, R1
STOREF R1, a

