
1

Type Checking
Type Systems
Type Equivalence
Typing Expressions

Coercion
Overloading
Error Recovery

Typing Statements
Polymorphic Types

Type Checking Situations
Expression typing

Operands matching
Selecting operand

Coercing types
Selecting among overload possibilities
Polymorphic type expansion

2

Type Systems - Rules
Rules of a language

Definition:
What are the base/immutable types?
What type constructors are available?
Can types be named?

Resolution:
What operators can be applied to what types?
What forms of coercion are allowed?
How are overloading situations resolved?

Type Systems – Base types
Base/immutable types

Generally objects with a direct machine
representation, where the objects can not
be further divided
Examples: bool, char, int, float, double,
long int, unsigned int, …
Simple objects have direct types

Literals: 3 (int), -5.0 (double)
Variables: int x; (int) double y; (double)

3

Type Systems –
Pointer Constructor

Constructors
Pointer

In C++ type *name, result is a pointer to a type (ptr to
type)
Examples:

int *x; (x is a ptr to an int)
float **y; (y is a ptr to a ptr to a float)

Operators related to pointer:
*x – dereference x (go to what x points at), in terms of
types, * applied to ptr to y , results in y
x-> equivalent to (*x). – compose * and . operations
x[…] – pointers can be used as standins for arrays (array
ref is just an address, pointer operation)

Type Systems –
Array Constructor

Constructors
Arrays

In C++ type name[size], result is array (0..size-1) of
type
Examples:

int z[10]; array (0..9) of int
float *w[5]; array (0..4) of pointer to float
double t[10][9] is array (0..9) of array (0..8) of double

Operators related to pointer:
x[expr] – refers to element of an array – equivalent to
*(x + sizeof(ArrayEl) * expr) – why arrays start at 0 in
C/C++

If x of type array (lo..hi) of type x[…] returns type

4

Type Systems – Products
Constructors

Products
Certain operations result in products

Function parameter lists
Function argument lists
Class/structure fields

Type is the product composition of the individual types
Examples:

(int x, float y, char z) – int X float X char
(3,’X’,2.0,0) – int X char X double X int
class x { int y; float z; }; - int X float
Parameters, class fields are named

Type Systems –
Class/Struct/Record Constructor

Constructors
Structures – classes, records, etc.

Types are products with named fields (can refer to
indivdual members by giving field name)
Type is the product of the field types with names
attached
Example:

class t { char x; int y; float z;}; - type is char(x) X int(y) X
float(z) with names attached

Operators:
. operator (x.y) – if x is of type … X typ (y) X …, resulting
type is typ
-> operator – composition of * and . operator x->y is (*x).

5

Type Systems –
Function Constructor

Constructors
Functions

Types are left hand side of products, followed
by ->, followed by result type
Example:

int foo (float x, char y) { } – float X char → int
Operator:

fname(args) – function call, if args match left hand
size of type associated with fname, resulting type is
the right hand side of type associated with fname
example: foo(3.0,’X’) has result type of int (from
above)

Type Systems – Type Variables
Type variables

Some languages allow the definition of
type variables (often useful in dealing with
cyclic/recursively defined types)
Type variable names often associated with
constructed types (e.g., class names)
But allowing type names can introduce
some equivalence problems (more later)

6

Forms of Checking
Static type checking – type checking done at
compile type

Used in many strongly typed languages (where all
variables/objects must have types)

Dynamic type checking – done at runtime
Often used in languages where objects not
strongly type (e.g., Lisp)
Type checking must be done at runtime (since
objects not guaranteed to have a single type)

Type Equivalence
Name equivalence – objects are considered to be
equivalent if they have the same (or in the case of
operators – appropriate names)

Problem – if a type name is given to a type (Number
declared a synonym for int) this may introduce type errors
that are not real errors

Structural equivalence – objects are considered
equivalent if they have similar structures

Useful but can allow some mappings we may not want:
class x { int y; float z;};
class position { int angle, float distance; };
x and position would be considered to be structurally
equivalent

7

Cyclic Types
Many structures in programming languages
are declared recursively (linked lists, trees,
etc.)
Example:
class LinkedList {

int data;
LinkedList *next;

};

next field’s type is based on the type it is part
of

Cyclic Type Graphs

LinkedList

int X ptr to

But how to compare this type

(structurally or by name)?

Often use names for types to make graphs easier

(makes equivalence easier to determine)

LinkedList

int X ptr to

LinkedList

8

Sample Language
Expressions

intLit (e.g., 1, 3, -5)
boolLit (e.g., 0, 1)
varname
e1 + e2

e1 / e2

e1 == e2
e1 < e2

not e
e1 and e2

f(arglist)
v.field
* e

Statements
if (e) stmt1; else stmt2; fi;
ident = expr;
f(arglist);

Simple types
bool, int, void

Constructors
Products
Structures
Pointers

Possible Nodes
IntLitNode (ival)
BoolLitNode (bval)
VariableNode (name)
BinaryNode (op,leftarg,rightarg)
UnaryNode (op,arg)
RecFieldNode (recexpr,fname)
FuncCallNode (fname,arglist)
IfNode(bexpr,ifstmt,elsestmt)
Other:

ArgListNode(arg,next)
StmtListNode(stmt,next)

9

When to Type Check
Depending on language, type checks
can often be done in parsing
Can also be done as a separate process
If done as a separate process,
performed as a traversal of the AST(s)
from the program
Generally two routines:

Type of expressions
Type of statements

Typing Expressions
Deals with expressions, possibly
complex expressions where we assume
the expressions will result in type
Some simple:
Type IntLitNode::expr_type() { return int; }
Type BoolLitNode::expr_type() { return int; }
Type VariableNode::expr_type() {

return type of variable; }

10

Typing Expressions - Operations
Type arguments, then
check/compare results

Type BinaryNode::expr_type() {
lefttype = leftarg->expr_type();
righttype = rightarg->expr_type();
if (op is + or /) {
rettype = int;
if (lefttype != int) {
rettype = error;
if (lefttype != error)
report error;

}
if (righttype != int) {
rettype = error;
if (righttype != error)
report error;

}
}

else if (op is == or <) {
if ((lefttype == righttype) &&

(lefttype is int or bool)) {
rettype = bool;

}
else {
rettype = error;
if ((lefttype != error) &&

(righttype != error))
report error;

}
}
else if (op is and)

/* check both args are bool, if so, return
bool */

return rettype;
}

Typing Expressions
What is missing?

What about pointers?
Probably should at least check for ==, and
maybe for <, + is a more interesting question
(and && and / seem unlikely)

Can we compare records?
Compare field by field?
Compare all of memory?
Structural or name equivalence (note, looking
up names of objects corresponding to records
should give us a product type)

11

Coercion
It is reasonable (and in most cases desirable)
to allow some automatic coercion (ints to
floats for an addition)
When do we do it? - During expression type
checking
if (op is +) {

if (lefttype is float) and (righttype is int)
insert a inttofloat in right child

}

+

3.1 5

+

3.1

5

inttofloat

Typing Expressions
UnaryNode – similar to binary
RecFieldNode – expression must return
product with field names (check if field name
fits)
FuncCallNode – build up product type from
arglist, then check if type is in symbol table
for function name

ArgListNode – returns type consisting of product
of type of current argument together with type
from remainder of argument list

12

Checking Function Call

foo(3,4.5,’A’)
FuncCallNode

foo ArgListNode

3 ArgListNode

4.5 ArgListNode

‘A’ null

Type: char

Type: float X (rest) = float X char

Type: int X (rest) = int X float X char

Look for int X float X char for function named foo

If type int X float X char → float associated with foo, return type float

Overloading
Allow name for function to be inserted into symbol
table multiple times if type for parameter list
(product) differs
When looking up function to be called match
argument type to each of the possibilities and pick
the one that matches
Complicating issue – when coercion is allowed
matches may not be perfect

If two possibilities are close, which one to choose
Example:

Definitions:
foo : int X float -> int
foo : float X int -> float

Which to choose when matching arguments int X int?

13

Error Recovery
As with parsing, often want to find
multiple errors
What to do when one error detected?

Generally, return error as type but don’t
generate further errors
E.g., left argument of + returns error, still
want the right argument to be some type
that can be added

Typing Statements
Statements checking causes expression
type checks:

type StmtListNode::stmt_type() {
stmttype = stmt->stmt_type();
if (stmttype != void) report error;
nexttype = next->stmt_type();
if (nexttype != void) report error;
return void;

}

14

Typing Statements
Parts of statement often must return type:

Example: if condition must return boolean type
type IfNode::stmt_type() {

bexprtype = bexpr->expr_type();
if (bexprtype != bool) report error;
ifstmttype = ifstmt->stmt_type();
if (ifstmttype != void) report error;
if (elsestmt != 0) {
elsestmttype = elsestmt->stmt_type();
if (elsestmttype != void) report error;

}
return void;

}

Polymorphic Type
C++ has templates – types that have
placeholders so they can be applied to
multiple types of objects

E.g., LinkedList of any type

Polymorphic classes inserted into
symbol table

Type resolved when needed

