
1

Lexical Analysis
Readings

Sections 2.1, 2.6
Chapter 3

Topics
Scanners
Finite Automata
Regular Expressions
Conversion Processes
Automating an Automaton

Scanner
Translate a sequence of characters into
a corresponding sequence of tokens

Group characters into lexemes (sequences
of characters that go together)
Determine token lexeme corresponds to

Deciding how to break the characters
into groups is based on the language

“An identifier is any letter followed by 0 or
more letters or digits”

2

Scanners in a Compiler
Scanners are generally called by the parser
(supply the next token from the file)
Written either from scratch or using a
scanner generator:

lex or flex (C)
Jlex (Java)

Scanner generators:
Generally take regular expressions as input
Produce a finite state machine (FSM)
implementation as output

Generating a Scanner

Regular
Expressions

Nondeterministic
Finite Automata

(NFA)

Deterministic
Finite Automata

(DFA)

Implementation
Of DFA

3

Finite State Machine (FSM)
A finite state machine (or finite
auotmaton) recognizes legal strings
from a language
Example: identifiers (letter followed by
letter or digit)

S A

letter

letter, digit

FSM Components

S

A

a

CB

D

State

Transition (from state B to
state C on input “a”)

Start state

A final, halt or accepting state

4

String Processing with a FSM
Set the current state to the start state
While there is still more input

Look for a transition from the current state based
on the current input character

Set the current state to the resulting state from the
transition
If no transition stop (reject the string)

Accept the string if the current state is a final
state (reject the string otherwise)

Q: what if there is more than one transition?

Example FSM
A number consists of one or more digits
with an optional sign (+ or -) plus an
optional decimal point

5

Formal Definition of a FSM
A finite automaton is a 5-tuple (Σ, Q, ∆,
s, F) where:

An input alphabet Σ
A set of states Q
A start state s
A set of accepting states F ⊆ Q
∆ is the state transition function: Q x Σ
Q (i.e., encodes transitions state →input

state)

Types of Finite State Machines
Deterministic (also called DFAs for
Deterministic Finite Automata)

No state has more than one outgoing edge with
the same label

Non-Deterministic (NFA)
States may have more than one outgoing edge
with the same label
Edges may be labeled with ε (epsilon), which
stands for the empty string (some use λ instead)

The FSM can follow an ε edge without considering the
current input character

6

Why Use NFAs?
Often simpler than DFA
Easier to string together expressions
that cover different types of strings
Processing in an NFA

Current states represents the set of
possible current states
An NFA accepts a string if there is a
sequence of moves starting in the start
state that consumes the entire string and
leaves the machine in a final state

The Language of an FSM
The language defined by a FSM is the
set of strings accepted by FSM.
For FSM M we write L(M) for the
language defined by M.
Two FSMs M and N are equivalent if
L(M) = L(N)
Theorem: for every NFA M, there exists
an equivalent DFA A.

