
1

Code Generation II
Code generation for OO languages

Object layout
Dynamic dispatch

Parameter-passing mechanisms
Allocating temporaries in the AR

Object Layout
OO implementation = Stuff from last lecture
+ More stuff

OO Slogan: If B is a subclass of A, than an
object of class B can be used wherever an
object of class A is expected

This means that code in class A works
unmodified for an object of class B

2

Two Issues
How are objects represented in
memory?

How is dynamic dispatch implemented?

Object Layout Example
class A {

int a = 0;
int d = 1;
int f() { a = a + d;
return a; }

};

class B extends A {
int b = 2;
int f() { return a; }
int g() { a = a – b;
return a; }

};

class C extends A {
int c = 3;
int h() { a = a * c;
return a; }

};

3

Object Layout (Cont.)
Fields a and d are inherited by classes B
and C

All methods in all classes refer to a

For A methods to work correctly in A, B,
and C objects, field a must be in the
same “place” in each object

Object Layout (Cont.)
An object is like a struct in C. The reference

foo.field
is an index into a foo struct at an offset

corresponding to field

Objects in Java/C++ are implemented similarly
Objects are laid out in contiguous memory
Each field is stored at a fixed offset in object

4

A Sample Object Layout
The first 3 words of an object contain
header information:

Dispatch Ptr
Field 1
Field 2

. . .

Class Tag
Object Size

Offset

0

4

8

12

16

Sample Object Layout (Cont.)
Class tag is an integer

Identifies class of the object
Object size is an integer

Size of the object in words
Dispatch ptr is a pointer to a table of
methods

More later
Fields in subsequent slots

Layout in contiguous memory

5

Subclasses
Observation: Given a layout for class A,

a layout for subclass B can be defined
by extending the layout of A with
additional slots for the additional field of
B

Leaves the layout of A unchanged
(B is an extension of A)

Layout Picture

cda*6CtagC

bda*6BtagB

da*5AtagA

201612840Offset
Class

6

Subclasses (Cont.)
The offset for a field is the same in a class
and all of its subclasses

Any method for an A1 can be used on a subclass
A2

Consider layout for An < … < A3 < A2 < A1

A2 attrs
A3 attrs

. . .

Header
A1 attrs.

A1 object

A2 object

A3 object

What about
multiple
inheritance?

Object Layout Example (Repeat)
class A {

int a = 0;
int d = 1;
int f() { a = a + d;
return a; }

};

class B extends A {
int b = 2;
int f() { return a; }
int g() { a = a – b;
return a; }

};

class C extends A {
int c = 3;
int h() { a = a * c;
return a; }

};

7

Dynamic Dispatch Example
e.g()

g refers to method in B if e is a B

e.f()
f refers to method in A if f is an A or C
(inherited in the case of C)
f refers to method in B for a B object

The implementation of methods and dynamic
dispatch strongly resembles the
implementation of fields

Dispatch Tables
Every class has a fixed set of methods
(including inherited methods)

A dispatch table indexes these methods
dispatch table = an array of method entry
points
A method f lives at a fixed offset in the
dispatch table for a class and all of its
subclasses

8

Dispatch Table Example
The dispatch table for
class A has only 1
method
The tables for B and C
extend the table for A
to the right
Because methods can
be overridden, the
method for f is not the
same in every class, but
is always at the same
offset

hfAC

gfBB

fAA

40Offset
Class

Using Dispatch Tables
The dispatch pointer in an object of
class X points to the dispatch table for
class X

Every method f of class X is assigned an
offset Of in the dispatch table at
compile time

9

Using Dispatch Tables (Cont.)
To implement a dynamic dispatch e.f()
we

Evaluate e. The result is a pointer to an
object x
Call D[Of]

D is the dispatch table for x
In the call, this is bound to x

Parameter Passing Mechanisms
There are many semantic issues in
programming languages centering on when
values are computed and the scope of names

we’ve already seen static vs. dynamic scoping

Now we’ll focus on parameter passing
When are arguments of function calls evaluated?
To what objects are the formal parameters
bound?

10

Call-By-Value
To evaluate f(e)

Evaluate e to a value v
Bind v to the formal parameter in the
function body

Example
void g(x) { x = x + 1; }
void f(y) { g(y); print(y); }
Under call-by-value, f(0) prints 0.

The Stack Under Call-By-Value

f(y)
g(y)

x = x + 1
print(y)

y 0

y 0
x 0

y 0
x 1

y 0

11

Call-By-Value Discussion
Under call-by-value, g(y) does not affect the
value of y

y’s value, not y itself, is passed to g
The formal parameter is stored in a different
location from the actual parameter

Call-by-value is widely used
C, C++, Java are prominent examples

Call-By-Reference
To evaluate f(e)

e is evaluated
A pointer to e is passed as the argument
f’s code accesses the argument through the
pointer

If e is already a stored value (i.e., a variable)
a pointer to that location is used
Otherwise, e is evaluated and stored in a
fresh, temporary location first

12

The Stack Under Call-By-
Reference

f(y)
g(y)

x = x + 1
print(y)

y 0

y 1

y
x

0

y
x

1

Call-By-Reference Discussion
Under Call-By-Reference, only the address is
passed

References to the value dereference the pointer

In the example, because x and y refer to the
same value, changes to x also change y

Many languages pass large data structures
(e.g., arrays) by reference

13

Review
The stack machine has activation records and
intermediate results interleaved on the stack

AR
Temporaries

AR
Temporaries

Review (Cont.)
Advantage: Very simple code
generation

Disadvantage: Very slow code
Storing/loading temporaries requires a
store/load and $sp adjustment

14

A Better Way
Idea: Keep temporaries in the AR

The code generator must assign a
location in the AR for each temporary

Example
def fib(x) = if x = 1 then 0 else

if x = 2 then 1 else
fib(x - 1) + fib(x – 2)

What intermediate values are placed on
the stack?

How many slots are needed in the AR
to hold these values?

15

How Many Temporaries?
Let NT(e) = # of temps needed to evaluate e

NT(e1 + e2)
Needs at least as many temporaries as NT(e1)
Needs at least as many temporaries as NT(e2) + 1

Space used for temporaries in e1 can be reused for
temporaries in e2

The Equations
NT(e1 + e2) = max(NT(e1), 1 + NT(e2))
NT(e1 - e2) = max(NT(e1), 1 + NT(e2))

NT(if e1 = e2 then e3 else e4) = max(NT(e1),1 + NT(e2),
NT(e3), NT(e4))

NT(id(e1,…,en) = max(NT(e1),…,NT(en))
NT(int) = 0
NT(id) = 0

Is this bottom-up or top-down?
What is NT(…code for fib…)?

16

The Revised AR
For a function definition f(x1,…,xn) = e
the AR has 2 + n + NT(e) elements

Return address
Frame pointer
n arguments
NT(e) locations for intermediate results

Picture

. . .
x1

Return Addr.
Temp NT(e)

. . .
Temp 1

Old FP
xn

17

Revised Code Generation
Code generation must know how many
temporaries are in use at each point

Add a new argument to code
generation: the position of the next
available temporary

Code Generation for + (original)
cgen(e1 + e2) =

cgen(e1)
sw $a0 0($sp)
addiu $sp $sp -4
cgen(e2)
lw $t1 4($sp)
add $a0 $t1 $a0
addiu $sp $sp 4

18

Code Generation for + (revised)
cgen(e1 + e2, nt) =

cgen(e1, nt)
sw $a0 nt($fp)
cgen(e2, nt + 4)
lw $t1 nt($fp)
add $a0 $t1 $a0

Notes
The temporary area is used like a small,
fixed-size stack

Exercise: Write out cgen for other
constructs

