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Intermediate Code and Optimizations
We have discussed

Runtime organization
Simple stack machine code generation
Improvements to stack machine code generation

Our compiler goes directly from AST to 
assembly language

And does not perform optimizations

Most real compilers use intermediate 
languages

Why Intermediate Languages ?
When to perform optimizations

On AST
Pro: Machine independent
Con: Too high level

On assembly language
Pro: Exposes optimization opportunities
Con: Machine dependent
Con: Must re-implement optimizations when re-targetting

On an intermediate language
Pro: Machine independent
Pro: Exposes optimization opportunities 
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Intermediate Languages
Each compiler uses its own intermediate 
language

IL design is still an active area of research

Intermediate language = high-level assembly 
language

Uses register names, but has an unlimited number
Uses control structures like assembly language
Uses op-codes but some are higher level

E.g., push translates to several assembly instructions
Most op-codes correspond directly to assembly op-codes

Three-Address Intermediate Code
Each instruction is of the form

x := y op z
y and z can be only registers or constants
Just like assembly 

Common form of intermediate code
The AST expression x + y * z is 
translated as

t1 := y * z
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Generating Intermediate Code
Similar to assembly code generation
Major difference

Use any number of IL registers to hold 
intermediate results

Generating Int. Code (Cont.)
Igen(e, t) function generates code to 
compute the value of e in register t
Example:
igen(e1 + e2, t) = 

igen(e1, t1)             (t1 is a fresh register)
igen(e2, t2)            (t2 is a fresh register)
t := t1 + t2

Unlimited number of registers
⇒ simple code generation
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An Intermediate Language
P → S P | ε
S → id := id op id

| id := op id
| id := id
| push id
| id := pop
| if id relop id goto L
| L:
| jump L

• id’s are register names
• Constants can replace id’s
• Typical operators: +, -, *

Definition: Basic Blocks
A basic block is a maximal sequence of 
instructions with: 

no labels (except at the first instruction), and 
no jumps (except in the last instruction)

Idea: 
Cannot jump into a basic block (except at 
beginning)
Cannot jump out of a basic block (except at end)
Each instruction in a basic block is executed after 
all the preceding instructions have been executed



5

Basic Block Example
Consider the basic block

1. L: 
2. t := 2 * x
3. w := t + x
4. if w > 0 goto L

No way for (3) to be executed without (2) 
having been executed right before

We know we can change (3) to w := 3 * x
Can we eliminate (2) as well?

Definition. Control-Flow Graphs
A control-flow graph is a directed graph 
with

Basic blocks as nodes
An edge from block A to block B if the 
execution can flow from the last instruction 
in A to the first instruction in B
E.g., the last instruction in A is jump LB

E.g., the execution can fall-through from 
block A to block B
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Control-Flow Graphs. Example.
The body of a method 
(or procedure) can be 
represented as a 
control-flow graph
There is one initial 
node
All “return” nodes are 
terminal

x := 1
i := 1

L:
x := x * x
i := i + 1
if i < 10 goto L

Optimization Overview
Optimization seeks to improve a 
program’s utilization of some resource

Execution time (most often)
Code size
Network messages sent, etc.

Optimization should not alter what the 
program computes

The answer must still be the same 
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A Classification of Optimizations
For languages like C and Java there are 
three granularities of optimizations

1. Local optimizations
Apply to a basic block in isolation

2. Global optimizations
Apply to a control-flow graph (method body) in 
isolation

3. Inter-procedural optimizations
Apply across method boundaries

Most compilers do (1), many do (2) and 
very few do (3)

Cost of Optimizations
In practice, a conscious decision is made not 
to implement the fanciest optimization known
Why?

Some optimizations are hard to implement
Some optimizations are costly in terms of 
compilation time
The fancy optimizations are both hard and costly

The goal: maximum improvement with 
minimum of cost
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Local Optimizations
The simplest form of optimizations
No need to analyze the whole 
procedure body

Just the basic block in question

Example: algebraic simplification

Algebraic Simplification
Some statements can be deleted
x := x + 0
x := x * 1

Some statements can be simplified
x := x * 0 ⇒ x := 0
y := y ** 2 ⇒ y := y * y
x := x * 8 ⇒ x := x << 3
x := x * 15 ⇒ t := x << 4; x := t - x

(on some machines << is faster than *; but not on 
all!)
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Constant Folding
Operations on constants can be computed at 
compile time
In general, if there is a statement

x := y op z
And y and z are constants
Then y op z can be computed at compile time

Example: x := 2 + 2 ⇒ x := 4
Example: if 2 < 0 jump L can be deleted
When might constant folding be dangerous?

Flow of Control Optimizations
Eliminating unreachable code:

Code that is unreachable in the control-flow graph
Basic blocks that are not the target of any jump or 
“fall through” from a conditional
Such basic blocks can be eliminated

Why would such basic blocks occur?
Removing unreachable code makes the 
program smaller

And sometimes also faster
Due to memory cache effects (increased spatial locality)
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Single Assignment Form
Some optimizations are simplified if 
each register occurs only once on the 
left-hand side of an assignment
Intermediate code can be rewritten to 
be in single assignment form
x := z + y                       b := z + y
a := x               ⇒ a := b
x := 2 * x                       x := 2 * b

(b is a fresh register)
More complicated in general, due to loops

Common Sub-expression Elimination
Assume

Basic block is in single assignment form
A definition x := is the first use of x in a block

If any assignment have the same rhs, they 
compute the same value
Example:
x := y + z                              x := y + z
…                             ⇒ …
w := y + z                             w := x
(the values of x, y, and z do not change in the … 

code)
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Copy Propagation
If w := x appears in a block, all subsequent 
uses of w can be replaced with uses of x
Example:

b := z + y                           b := z + y
a := b                   ⇒ a := b
x := 2 * a                           x := 2 * b

This does not make the program smaller or 
faster but might enable other optimizations

Constant folding
Dead code elimination

Copy Propagation and Constant 
Folding

Example:
a := 5                                a := 5
x := 2 * a         ⇒ x := 10
y := x + 6                           y := 16
t := x * y                           t := x << 4
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Copy Propagation and Dead Code 
Elimination
If 

w := rhs appears in a basic block
w does not appear anywhere else in the program

Then 
the statement w := rhs is dead and can be 

eliminated
Dead = does not contribute to the program’s 
result

Example:  (a is not used anywhere else)
x := z + y             b := z + y                  b := x + y
a := x          ⇒ a := b              ⇒ x := 2 * b
x := 2 * x            x := 2 * b

Applying Local Optimizations
Each local optimization does very little 
by itself
Typically optimizations interact

Performing one optimizations enables other 
optimizations

Typical optimizing compilers repeatedly 
perform optimizations until no 
improvement is possible

The optimizer can also be stopped at any 
time to limit the compilation time
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An Example
Initial code:

a := x ** 2 
b := 3
c := x
d := c * c
e := b * 2 
f := a + d
g := e * f

An Example
Algebraic optimization:

a := x ** 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f



14

An Example
Algebraic optimization:

a := x * x
b := 3
c := x
d := c * c
e := b << 1
f := a + d
g := e * f

An Example
Copy propagation:

a := x * x 
b := 3
c := x
d := c * c
e := b << 1 
f := a + d
g := e * f
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An Example
Copy propagation:

a := x * x 
b := 3
c := x
d := x * x
e := 3 << 1 
f := a + d
g := e * f

An Example
Constant folding:

a := x * x 
b := 3
c := x
d := x * x
e := 3 << 1
f := a + d
g := e * f
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An Example
Constant folding:

a := x * x 
b := 3
c := x
d := x * x
e := 6
f := a + d
g := e * f

An Example
Common subexpression elimination:

a := x * x
b := 3
c := x
d := x * x
e := 6 
f := a + d
g := e * f
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An Example
Common subexpression elimination:

a := x * x
b := 3
c := x
d := a
e := 6 
f := a + d
g := e * f

An Example
Copy propagation:

a := x * x 
b := 3
c := x
d := a
e := 6
f := a + d
g := e * f
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An Example
Copy propagation:

a := x * x 
b := 3
c := x
d := a
e := 6
f := a + a
g := 6 * f

An Example
Dead code elimination:

a := x * x 
b := 3
c := x
d := a
e := 6
f := a + a
g := 6 * f

Note: assume  b, c, d, e  are  temporaries 
(introduced by the compiler) and hence are not 
used outside this basic block
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An Example
Dead code elimination:

a := x * x 

f := a + a
g := 6 * f

This is the final form

Peephole Optimizations on 
Assembly Code

The optimizations presented before work on 
intermediate code

They are target independent
But they can be applied on assembly language 
also

Peephole optimization is an effective 
technique for improving assembly code

The “peephole” is a short sequence of (usually 
contiguous) instructions
The optimizer replaces the sequence with another 
equivalent one (but faster)
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Peephole Optimizations (Cont.)
Write peephole optimizations as replacement 
rules

i1, …, in → j1, …, jm
where the rhs is the improved version of the lhs

Example:
move $a $b, move $b $a → move $a $b

Works if move $b $a is not the target of a jump

Another example
addiu $a $a i, addiu $a $a j → addiu $a $a i+j 

Peephole Optimizations (Cont.)
Many (but not all) of the basic block 
optimizations can be cast as peephole 
optimizations

Example: addiu $a $b 0  → move $a $b
Example: move $a $a       →
These two together eliminate addiu $a $a 0

Just like for local optimizations, peephole 
optimizations need to be applied repeatedly 
to get maximum effect
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Local Optimizations. Notes.
Intermediate code is helpful for many 
optimizations
Many simple optimizations can still be applied 
on assembly language
“Program optimization” is grossly misnamed

Code produced by “optimizers” is not optimal in 
any reasonable sense
“Program improvement” is a more appropriate 
term


