Constructing SLR states

- LR(0) state machine
- encodes all strings that are valid on the stack
- each valid string is a configuration, and hence corresponds to a state of the LR(0) state machine
- each state tells us what to do (shift or reduce?)

Constructing SLR states

- How to find the set of needed configurations
- What are the valid handles that can appear at the front of the input?
- Begin with item $S^{\prime} \rightarrow$. Start, calculate related items (closure)
- Determine following states (what states can be reached on a single input or nonterminal)
- Construct closure of each resulting state

Closure of a Set of Items

closure (items i, grammar g)
$c=i$
repeat
for each item $X \rightarrow \alpha . Y \beta$ in c and each production $Y \rightarrow \gamma$ from g s.t.
$Y \rightarrow . \gamma$ is not in c add $Y \rightarrow, \gamma$ to c
until no further changes to c
return c

Closure Example

- Grammar

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \text { int * } \mathrm{T} \mid \text { int | (E) }
\end{aligned}
$$

- Initial item $\mathrm{S}^{\prime} \rightarrow$. E
- $c=\left\{\mathrm{S}^{\prime} \rightarrow\right.$. E$\}$
- First pass $\{S \rightarrow$.E $\}$
- Add $\mathrm{E} \rightarrow$. $\mathrm{T}+\mathrm{E} \quad c=\left\{\mathrm{S}^{\prime} \rightarrow \mathrm{E}, \mathrm{E} \rightarrow . \mathrm{T}+\mathrm{E}\right\}$
- Add $\mathrm{E} \rightarrow$. $\mathrm{T} \quad c=\left\{\mathrm{S}^{\prime} \rightarrow \mathrm{E}, \mathrm{E} \rightarrow . \mathrm{T}+\mathrm{E}, \mathrm{E} \rightarrow . \mathrm{T}\right\}$
- Second pass $c=\left\{\mathrm{S}^{\prime} \rightarrow \mathrm{E}, \mathrm{E} \rightarrow . \mathrm{T}+\mathrm{E}, \mathrm{E} \rightarrow . \mathrm{T}\right\}$
- Add $T \rightarrow$. int $* T c=\left\{S^{\prime} \rightarrow . E, E \rightarrow . T+E, E \rightarrow . T, T \rightarrow\right.$. int $\left.* T\right\}$
- Add $\mathrm{T} \rightarrow$. int $\quad c=\left\{\mathrm{S}^{\prime} \rightarrow \mathrm{E}, \mathrm{E} \rightarrow . \mathrm{T}+\mathrm{E}, \mathrm{E} \rightarrow . \mathrm{T}, \mathrm{T} \rightarrow\right.$.int $* \mathrm{~T}, \mathrm{~T} \rightarrow$.int $\}$
- Add $\mathrm{T} \rightarrow$. (E) $\quad c=\left\{\mathrm{S}^{\prime} \rightarrow . \mathrm{E}, \mathrm{E} \rightarrow . \mathrm{T}+\mathrm{E}, \mathrm{E} \rightarrow . \mathrm{T}, \mathrm{T} \rightarrow\right.$.int*T,T \rightarrow.int , $\mathrm{T} \rightarrow$.(E) $\}$
- Third pass $c=\left\{\mathrm{S}^{\prime} \rightarrow . \mathrm{E}, \mathrm{E} \rightarrow . \mathrm{T}+\mathrm{E}, \mathrm{E} \rightarrow . \mathrm{T}, \mathrm{T} \rightarrow\right.$.int*T,T \rightarrow.int , $\mathrm{T} \rightarrow$.(E) $\}$
- no change

Closure Example

- Closure results in a new state
- Closure of $\left\{S^{\prime} \rightarrow\right.$. E \} is
$\left\{S^{\prime} \rightarrow . E, E \rightarrow . T+E, E \rightarrow . T, T \rightarrow\right.$. int*T,
$\mathrm{T} \rightarrow$.int , $\mathrm{T} \rightarrow$.(E$)\}$

$S^{\prime} \rightarrow . E \quad 1$
$E \rightarrow . T$
$E \rightarrow . T+E$
$T \rightarrow .(E)$
$T \rightarrow$ int * T
$T \rightarrow$ int

New States - the goto Function

- To determine possible states reachable from existing state use goto function
- goto(state,stack element) is the closure of the set of items that result from shifting stack element in state
- For state $\left\{\mathrm{S}^{\prime} \rightarrow \mathrm{E}, \mathrm{E} \rightarrow . \mathrm{T}+\mathrm{E}, \mathrm{E} \rightarrow . \mathrm{T}, \mathrm{T} \rightarrow\right.$.int*T,

$$
\mathrm{T} \rightarrow \text {.int , } \mathrm{T} \rightarrow \text {.(E) \} }
$$

set of items resulting from shifting int are:
$\{\mathrm{T} \rightarrow$ int. , $\mathrm{T} \rightarrow$ int.$* T\}$

Goto Function

goto (items i, stackel J, grammar g)
initial= set of items $X \rightarrow \alpha J$. β such that $X \rightarrow \alpha . J \beta$ is in i return closure(initial, g)

Producing Set of States

calc_states (grammar g)
$s t s=\left\{\right.$ closure $\left(\left\{\left[S^{\prime}->\right.\right.\right.$. Start $\left.\left.\left.]\right\}, g\right)\right\}$
repeat
for each state s in $s t s$ and each stack element e such that goto (s, e) is not empty and not in sts add goto($s, e)$ to $s t s$
until no more states can be added to sts

Defining SLR States Example
 - Grammar

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \text { int } * \mathrm{~T} \mid \text { int } \mid(\mathrm{E})
\end{aligned}
$$

- Initial state:

$$
\begin{aligned}
& \hline S^{\prime} \rightarrow . E \\
& E \rightarrow . T \\
& E \rightarrow . T+E \\
& T \rightarrow .(E) \\
& T \rightarrow \text {.int } * T \\
& T \rightarrow . \text { int } \\
& \hline
\end{aligned}
$$

States Example (cont)

From initial state (1) From state 1 on T we get on E we get state 2 state 3

States Example (cont)

States Example (cont)

From state 3 on + we From state 4 on E we get get state 6

States Example (cont)

From state 4 on T we From state 4 on (we get get state 3 state 4

States Example (cont)

From state 4 on int we get state 5
$T \rightarrow$ int
$T \rightarrow$ int

States Example (cont)

From state 6 on E we From state 6 on T we get get state 9 state 3

States Example (cont)

From state 6 on (we From state 6 on int we get get state 4 state 5

$E \rightarrow T+$ E 6	$\mathrm{T} \rightarrow$ (. E)
$E \rightarrow . T$	$E \rightarrow . T$
$E \rightarrow . T+E$	(E \rightarrow. T + E
$T \rightarrow$ (E)	$T \rightarrow$ (E)
$T \rightarrow$ int * T	$T \rightarrow$ int * T
$T \rightarrow$ int	$T \rightarrow$ int

$E \rightarrow T+$ E 6	
$E \rightarrow$. T	
$\mathrm{E} \rightarrow . \mathrm{T}+\mathrm{E}$	int $\mathrm{T} \rightarrow$ int. * T
$\mathrm{T} \rightarrow$. E$)$	T \rightarrow int. 5
$T \rightarrow$ int * T	
T \rightarrow. int	

States Example (cont)
From state 7 on) we From state 8 on T we get get state 10 state 11

States Example (cont)
From state 8 on (we From state 8 on int we get get state 4 state 5

Constructing an SLR Parse Table

- Add an extra production $\mathrm{S}^{\prime} \rightarrow$ Start to the grammar
- Construct set of $\operatorname{LR}(0)$ States, the initial state is the one containing $\mathrm{S}^{\prime} \rightarrow$. Start
- For each transition $\mathrm{A} \rightarrow{ }^{\mathrm{X}} \mathrm{B}$ in the set of states add an action shift B in column X for row A
- For each item $[Y \rightarrow \alpha$.] part of state A, set the action in row A to reduce $Y \rightarrow \alpha$ for each column X in FOLLOW(Y)
- Empty table items are errors
- Grammar is not SLR if more than one entry for any table item

Resulting SLR Parse Table

	int	*	+	()	\$	E	T
1	s5			s4			s2	s3
2						acc		
3			s6		r2	r2		
4	s5			s4			s7	s3
5		s8	r4		r4	r4		
6	s5			s4			s9	s3
7					s10			
8	s5			s4				s11
9					r1	r1		
10			r5		r5	r5		
11			r3		r3	r3		

1: $\mathrm{E} \rightarrow \mathrm{T}+\mathrm{E}$
2: $\mathrm{E} \rightarrow \mathrm{T}$
3: $\mathrm{T} \rightarrow$ int * T
4: $T \rightarrow$ int
5: $T \rightarrow(E)$

Another Example

Grammar: $S \rightarrow A x B|B \quad A \rightarrow y B| z \quad B \rightarrow A$

Corresponding Parse Table

	X	y	Z	\$	S	A	B
1		s5	s6		s2	s3	s4
2				acc			
3	$\begin{aligned} & \text { s8, } \\ & \text { r5 } \end{aligned}$			r5			
4				r2			
5		s5	s6			s7	s9
6	r4			r4			
7	r5			r5			
8		s5	s6			S7	S10
9	r3			r3			
10				r1			

Follow $(S)=\{\$\}$
Follow $(A)=\{x, \$\}$
Follow $(B)=\{x, \$\}$

1: $S \rightarrow A x B$
2: $S \rightarrow B$
3: $A \rightarrow y B$
4: $\mathrm{A} \rightarrow \mathrm{Z}$
5: $B \rightarrow A$

Limits of SLR Parsing

- But is it really possible to get to state 3 through a B - no, the only viable prefix involves an A !
- So the reduce is a bad choice
- Limit introduced by SLR parsing in using the FOLLOW set to decide reductions
- Idea: augment LR items with 1 character lookahead [S \rightarrow. AxB , b] making an $\operatorname{LR}(1)$ item

Canonical LR Parsing

- States similar to SLR, but use LR(1) rather than LR(0) items
- When reduction is possible, use reduction of an item [$S \rightarrow \alpha ., x$] only when next token is x (lookahead items used only for reductions)
- Advantage: avoids some conflicts introduced by SLR parsing tables
- Disadvantage: table is often MUCH larger as items are differentiated by which character currently used for lookahead
- Building LR(1) tables - similar to SLR, only need change closure and goto functions

Look Ahead LR (LALR) Parsing

- Disadvantage of large tables can be mitigated by merging states
- States can be merged when there is no fundamental difference
- E.g., similar states with no reductions possible with different lookahead characters

