
1

Syntax-Directed Translation
Extending CFGs
Grammar Annotation
Parse Trees
Abstract Syntax Trees (ASTs)

Readings: Section 5.1, 5.2, 5.5, 5.6

Motivation: parser as a translator

syntax-directed
translation

parser

syntax + translation rules
(typically hardcoded in the parser)

stream of
tokens

ASTs, or
assembly code

2

Mechanism of syntax-directed
translation

syntax-directed translation is done by
extending the CFG

a translation rule is defined for each production

given
X d A B c

the translation of X is defined in terms of
translation of nonterminals A, B
values of attributes of terminals d, c
constants

To translate an input string:
1. Build the parse tree.
2. Working bottom-up

• Use the translation rules to compute the translation of
each nonterminal in the tree

Result: the translation of the string is the translation of
the parse tree's root nonterminal

Why bottom up?
a nonterminal's value may depend on the value of
the symbols on the right-hand side,
so translate a non-terminal node only after children
translations are available

3

Example 1: arith expr to its value
Syntax-directed translation:

the CFG translation rules

E E + T E1.trans = E2.trans + T.trans

E T E.trans = T.trans
T T * F T1.trans = T2.trans * F.trans
T F T.trans = F.trans
F int F.trans = int.value
F (E) F.trans = E.trans

Example 1 (cont)
Input: 2 * (4 + 5)

Annotated Parse Tree

E (18)

T (18)

F (9)T (2)

F (2)
E (9)

T (5)

F (5)

E (4)

T (4)

F (4)

*

)

*

(
int (2)

int (4)
int (5)

4

Example 2: Compute type of expr
E -> E + E if ((E2.trans == INT) and (E3.trans == INT)

then E1.trans = INT
else E1.trans = ERROR

E -> E and E if ((E2.trans == BOOL) and (E3.trans == BOOL)
then E1.trans = BOOL
else E1.trans = ERROR

E -> E == E if ((E2.trans == E3.trans) and (E2.trans != ERROR))
then E1.trans = BOOL
else E1.trans = ERROR

E -> true E.trans = BOOL
E -> false E.trans = BOOL
E -> int E.trans = INT
E -> (E) E1.trans = E2.trans

Example 2 (cont)
Input: (2 + 2) == 4

1. parse tree:

2. annotation:

5

Another Example
A CFG for the language of binary numbers:
B 0

1
B 0
B 1

Define a syntax-directed translation so that
the translation of a binary number is its base-
10 value
Draw the parse tree for 1001 and annotate
each nonterminal with its translation

Building Abstract Syntax Trees
Examples so far, streams of tokens
translated into

integer values, or
types

Translating into ASTs is not very
different

6

AST vs Parse Tree
AST is condensed form of a parse tree

operators appear at internal nodes, not at leaves
"Chains" of single productions are collapsed
Lists are "flattened"
Syntactic details are ommitted

e.g., parentheses, commas, semi-colons

AST is better structure for later compiler
stages

omits details having to do with the source
language
only contains information about the essential
structure of the program

Ex: 2*(4+5) parse tree vs AST

*

+2

54

E

T

FT

F E

T
F

E
T
F

*

)

*

(
int (2)

int (5)

int (4)

7

Definitions of AST nodes
class ExpNode { }

class IntLitNode extends ExpNode {
public IntLitNode(int val) {...}

}

class PlusNode extends ExpNode {
public PlusNode(ExpNode e1, ExpNode e2) {
... }

}

class TimesNode extends ExpNode {
public TimesNode(ExpNode e1, ExpNode e2) {
... }

}

AST-building translation rules
E1 E2 + T E1.trans =

new PlusNode(E2.trans, T.trans)

E T E.trans = T.trans

T1 T2 * F T1.trans =

new TimesNode(T2.trans, F.trans)

T F T.trans = F.trans

F int F.trans = new IntLitNode(int.value)

F (E) F.trans = E.trans

8

Example
Illustrate the syntax-directed translation
defined previously by

drawing the parse tree for 2 + 3 * 4, and
annotating the parse tree with its
translation

i.e., each nonterminal X in the parse tree will
have a pointer to the root of the AST subtree
that is the translation of X

Syntax-Directed Translation and
LL Parsing

not obvious how to do this, since
predictive parser builds the parse tree top-down,
syntax-directed translation is computed bottom-
up.

could build the parse tree (inefficient!)
Instead, add a semantic stack:

holds nonterminals' translations
when the parse is finished, the semantic stack will
hold just one value:

the translation of the root nonterminal
(which is the translation of the whole input).

9

How does semantic stack work?
How to push/pop onto/off the semantic stack?

add actions to the grammar rules

The action for one rule must:
Pop the translations of all rhs nonterminals
Compute and push the translation of the lhs nonterminal

Actions are represented by action numbers
action numbers become part of rhs of grammar rules
action numbers pushed onto the (normal) stack along with
the terminal and nonterminal symbols
when an action number is the top-of-stack symbol,
it is popped and the action is carried out

Keep in mind

action for X Y1 Y2 ... Yn is pushed onto
the (normal) stack when the derivation
step
X Y1 Y2 ... Yn is made, but

the action is performed only after complete
derivations for all of the Y's have been
carried out

10

Example: Counting Parentheses
E1 ε E1.trans = 0

(E2) E1.trans = E2.trans + 1
[E2] E1.trans = E2.trans

Example: Step 1
replace the translation rules with translation
actions

Each action must:
Pop rhs nonterminals' translations from semantic stack
Compute and push the lhs nonterminal's translation

Here are the translation actions:
E ε push(0);

(E) exp2Trans = pop();
push(exp2Trans + 1);

[E] exp2Trans = pop();
push(exp2Trans);

11

Example: Step 2
each action is represented by a unique action

number,
the action numbers become part of the grammar
rules:

E ε #1
(E) #2
[E] #3

#1: push(0);
#2: exp2Trans = pop(); push(exp2Trans + 1);
#3: exp2Trans = pop(); push(exp2Trans);

Example: example
input so far stack semantic stack action
------------ ----- -------------- ------
(E EOF pop, push "(E) #2"
((E) #2 EOF pop, scan
([E) #2 EOF pop, push "[E]"
([[E]) #2 EOF pop, scan
([] E]) #2 EOF pop, push ε #1
([] #1]) #2 EOF pop, do action
([]]) #2 EOF 0 pop, scan
([])) #2 EOF 0 pop, scan
([]) EOF #2 EOF 0 pop, do action
([]) EOF EOF 1 pop, scan
([]) EOF empty stack: input accepted!

translation of input = 1

12

What if the rhs has >1
nonterminal?

pop multiple values from the semantic stack:
CFG Rule:

methodBody { varDecls stmts }
Translation Rule:

methodBody.trans = varDecls.trans + stmts.trans
Translation Action:

stmtsTrans = pop(); declsTrans = pop();
push(stmtsTrans + declsTrans);

CFG rule with Action:
methodBody { varDecls stmts } #1
#1: stmtsTrans = pop(); declsTrans = pop();

push(stmtsTrans + declsTrans);

Terminals
Simplification:

we assumed that each rhs contains at most one
terminal

How to push the value of a terminal?
a terminal’s value is available only when
the terminal is the "current token“

put action before the terminal
CFG Rule: F int
Translation Rule: F.trans = int.value
Translation Action: push(int.value)
CFG rule with Action:

F #1 int // action BEFORE terminal
#1: push(currToken.value)

13

Handling non-LL(1) grammars
Recall that to do LL(1) parsing

non-LL(1) grammars must be transformed
e.g., left-recursion elimination

the resulting grammar does not reflect the
underlying structure of the program

E E + T
vs.

E T E'
E’ ε | + T E'

How to define syntax directed translation for
such grammars?

The solution is simple!
Treat actions as grammar symbols

define syntax-directed translation on the
original grammar:

define translation rules
convert them to actions that push/pop the
semantic stack
incorporate the action numbers into the
grammar rules

then convert the grammar to LL(1)
treat action numbers as regular grammar
symbols

14

Example
non-LL(1): E E + T #1

T
T T * F #2

F

#1: TTrans = pop(); ETrans = pop(); push Etrans + TTrans;
#2: FTrans = pop(); TTrans = pop(); push Ttrans * FTrans;

after removing immediate left recursion:
E T E'
E‘ + T #1 E'

ε
T F T'
T' * F #2 T'

ε

Example
For the following grammar, give

translation rules + translation actions,
a CFG with actions so that the translation of an
input expression is the value of the expression.

Do not worry that the grammar is not LL(1).

then convert the grammar (including actions)
to LL(1)

E E + T | E – T | T
T T * F | T / F | F
F int | (E)

