
1

Lexical Analysis

Regular
Expressions

Nondeterministic
Finite Automata

(NFA)

Deterministic
Finite Automata

(DFA)

Implementation
Of DFA

Regular Expressions (REs)
Compact mechanism for defining a language

Generally easier to understand than FSMs

Example: identifier – letter followed by zero
or more letters or digits
letter (letter|digit)*

Used as input to scanner generator
Define each token, also
Define white-space, comments, etc.

Things that do not correspond to tokens but must also
be recognized and ignored

2

Regular Expression Operators

Used for grouping (as in
programming
languages)

(X) grouping

One or more occurrence
of X

X +

Zero or more
occurrences of X

X * Kleene closure

X or Y (alternatives)X | Y alternation

X followed by YX Y concatentation

Operands of RE Operators
The empty string ε
Single characters of the underlying
alphabet
Shorthands for groups of characters
(letter for A-Z or a-z, digit for 0-9, etc.)
Legal regular expressions (an operator
may be applied to the result of an
operator)

3

Precedence for RE Operators

For example:
letter letter | digit *
letter (letter | digit) *

highestX ^ YX *, X +

middleX * YX Y

lowestX + YX | Y
Precedence

Analagous Arithmetic
Operator

Regular Expression
Operator

Language Defined By a RE
Recall, for an automaton the language is the
set of strings accepted by the automaton
For a RE, the language is the set of strings
matched by the RE

{ “”, “a”, “b”, “c”, “aa”, “ab”,
“ac”, “ba”, “bb”, “bc”, … }

(a | b | c) *
{ “a”, “b”, “c” }a | b | c
{ “ab” }ab

{ “” }ε
Set of StringsRegular Expression

4

Understanding REs
Describe these languages:
0 (0 | 1)* 0

(0 | 1) * 0 (0 | 1) (0 | 1)

1* (0 (1 *) 0 (1 *)) *

Writing Regular Expressions
Translate these into regular expressions

Words ending in “ing” (a word consists of
lower or upper-case letters)

Binary strings with an odd number of 1s

5

Writing Regular Expressions
Floating point numbers with an optional leading
sign (+ or -) consisting of at least one digit and an
optional decimal point (if there is a decimal point,
there must be at least one digit before and one
after the decimal point)

From RE to a Scanner
Theorem: for every regular expression,
there is a deterministic finite-state
machine that defines the same
language (and vice versa)
Q: How do we create this machine
(automatically)?
Idea: start by translating a RE to an
NFA

6

Lexical Analysis

Regular
Expressions

Nondeterministic
Finite Automata

(NFA)

Deterministic
Finite Automata

(DFA)

Implementation
Of DFA

RE to NFA(1)
For each kind of RE, define an NFA

Notation: NFA for RE M

For ε

For input a

M

ε

a

7

RE to NFA (2)
For A B

For A | B

A Bε

A

B

ε
ε

ε

ε

RE to NFA (3)
For A*

A+ ?

A εε

ε

ε

8

Example: RE to NFA
Consider the regular expression

(1|0)*1
The NFA is

1
0 1ε ε

ε

ε

ε

ε ε

ε

ε

A B
C

D

E

F
G H I J

Another Example

(ε | + | -) digit+ (ε | . digit+)

9

Lexical Analysis

Regular
Expressions

Nondeterministic
Finite Automata

(NFA)

Deterministic
Finite Automata

(DFA)

Implementation
Of DFA

NFA to DFA: The Trick
Simulate the NFA
Each state of the DFA
= a non-empty subset of states of the NFA

Start state
= the set of NFA states reachable through ε-moves

from NFA start state

Add a transition S →a S’ to DFA iff
S’ is the set of NFA states reachable from any
state in S after seeing the input a, considering ε-
moves as well

10

NFA to DFA: Remark
An NFA may be in many states at any
time
How many different states ?
If there are N states, the NFA must be
in some subset of those N states
How many subsets are there?
2N - 1 = finitely many

NFA -> DFA Example

1
0 1ε ε

ε

ε

ε

ε ε

ε

ε

A B
C

D

E

F
G H I J

ABCDHI

FGHIABCD

EJGHIABCD

0

1

0

10 1

11

NFA to DFA: the practice
NFA to DFA conversion is at the heart of
tools such as flex
But, DFAs can be huge
In practice, flex-like tools trade off
speed for space in the choice of NFA
and DFA representations

