iLexical Analysis

Regular
Expressions
Y
Nondeterministic
Finite Automata
(NFA)

Deterministic
Finite Automata

(DFA) \

Implementation
Of DFA

$‘ Reqgular Expressions (RES)

= Compact mechanism for defining a language
= Generally easier to understand than FSMs

= Example: identifier — letter followed by zero
or more letters or digits
letter (letter|digit)*

= Used as input to scanner generator
= Define each token, also

= Define white-space, comments, etc.

= Things that do not correspond to tokens but must also
be recognized and ignored

Regular Expression Operators

XY concatentation

X followed by Y

X | Y alternation

X or Y (alternatives)

X * Kleene closure

Zero or more
occurrences of X

X +

One or more occurrence
of X

(X) grouping

Used for grouping (as in
programming
languages)

$N Operands of RE Operators

= The empty string €
= Single characters of the underlying

alphabet

= Shorthands for groups of characters
(letter for A-Z or a-z, digit for 0-9, etc.)

= Legal regular expressions (an operator
may be applied to the result of an

operator)

« Precedence for RE Operators

Regular Expression | Analagous Arithmetic
Operator Operator Precedence
X|Y X+Y lowest
XY X*Y middle
X* X+ XNY highest

= For example:

letter letter | digit *
letter (letter | digit) *

$M Language Defined By a RE

= Recall, for an automaton the language is the
set of strings accepted by the automaton

= For a RE, the language is the set of strings
matched by the RE

Regular Expression |Set of Strings
g {7}
ab {"ab” }
alb|c {"a”,"b", “c" }
(alble)* [{™ " "b" "c", “aa", “ab",

\\aCII, \\ba", “bb”, \\bCII, . }

&FUnderstanding REs

= Describe these languages:
0(0|1)*0

0l1)*0(0|1)(0]1)

(0@"o(*)*

« \Writing Regular Expressions

= Translate these into regular expressions

= Words ending in “ing” (a word consists of
lower or upper-case letters)

= Binary strings with an odd number of 1s

*Writing Regular Expressions

= Floating point numbers with an optional leading
sign (+ or -) consisting of at least one digit and an
optional decimal point (if there is a decimal point,
there must be at least one digit before and one
after the decimal point)

- From RE to a Scanner

= Theorem: for every regular expression,
there is a deterministic finite-state
machine that defines the same
language (and vice versa)

= Q: How do we create this machine
(automatically)?

= Idea: start by translating a RE to an
NFA

iLexical Analysis

Regular

Expressions
Y
Nondeterministic

Finite Automata
(NFA)

Deterministic
Finite Automata

(DFA) \

Implementation
Of DFA

$ RE to NFA(1)

= For each kind of RE, define an NFA
= Notation: NFA for RE M

=« For g
~0—-0

= For input a

~O- 0

L RE to NFA (2)

= ForAB

$ RE to NFA (3)

s For A*

43y
= A+7? 8

&FExample: RE to NFA

= Consider the regular expression

(1]0)*1
= The NFA is
T eolae)
@ € @ ©H@

$ Another Example
(e | +|-) digit+ (€ | . digit+)

iLexical Analysis

Regular

Expressions
Y
Nondeterministic

Finite Automata
(NFA)

Deterministic
Finite Automata

(DFA) \

Implementation
Of DFA

$ NFA to DFA: The Trick

Simulate the NFA

Each state of the DFA
= a non-empty subset of states of the NFA

Start state

= the set of NFA states reachable through s-moves
from NFA start state

Add a transition S —»2 S’ to DFA iff

= S'is the set of NFA states reachable from any
state in S after seeing the input a, considering ¢-
moves as well

&FNFA to DFA: Remark

= An NFA may be in many states at any
time
= How many different states ?

= If there are N states, the NFA must be
in some subset of those N states

= How many subsets are there?
= 2N - 1 = finitely many

* NFA -> DFA Example

€

ol)

*NFA to DFA: the practice

= NFA to DFA conversion is at the heart of
tools such as flex

= But, DFAs can be huge

= In practice, flex-like tools trade off
speed for space in the choice of NFA
and DFA representations

