
1

The Parser
Scanner vs. parser

Why regular expressions are not enough

Grammars (context-free grammars)
grammar rules
derivations
parse trees
ambiguous grammars
useful examples

Reading:
Sections 4.1 and 4.2

The Functionality of the Parser
Input: sequence of tokens from scanner

Output: parse tree of the program
parse tree is generated if the input is a legal program
if input is an illegal program, syntax errors are issued

Note:
Instead of parse tree, some parsers produce directly:

abstract syntax tree (AST) + symbol table (as in P3), or
intermediate code, or
object code

For the moment, we’ll assume that parse tree is generated

2

Comparison with Lexical
Analysis

Parse treeString of
tokens

Parser

String of
tokens

String of
characters

Scanner

OutputInputPhase

Example

E

E

E E

E+

id*

idid

• The program:
x * y + z

• Input to parser:
ID TIMES ID PLUS ID
we’ll write tokens as follows:
id * id + id

• Output of parser:
the parse tree

3

Why are regular expressions
not enough?

Write an automaton that accepts strings
“a”, “(a)”, “((a))”, and “(((a)))”

How about: “a”, “(a)”, “((a))”, “(((a)))”, …
“(ka)k”

What must parser do?
1. Recognizer: not all strings of tokens are programs

must distinguish valid and invalid strings of tokens
2. Translator: must expose program structure

• e.g., associativity and precedence
• hence must return the parse tree

We need:
A language for describing valid strings of tokens

context-free grammars
(analogous to regular expressions in the scanner)

A method for distinguishing valid from invalid strings of
tokens (and for building the parse tree)

the parser
(analogous to the state machine in the scanner)

4

Context-Free Grammars
(CFGs)

Example: Simple Arithmetic Expressions
In English:

An integer is an arithmetic expression.
If exp1 and exp2 are arithmetic expressions,
then so are the following:

exp1 - exp2
exp1 / exp2
(exp1)

the corresponding CFG: we’ll write tokens as follows:

exp INTLITERAL E intlit
exp exp MINUS exp E E - E
exp exp DIVIDE exp E E / E
exp LPAREN exp RPAREN E (E)

Reading the CFG
The grammar has five terminal symbols:

intlit, -, /, (,)
terminals of a grammar = tokens returned by the scanner.

The grammar has one non-terminal symbol:
E
non-terminals describe valid sequences of tokens

The grammar has four productions or rules,
each of the form: E α

left-hand side = a single non-terminal.
right-hand side = either

sequence of 1 or more terminals and/or non-terminals, or
ε (an empty production); again, the book uses symbol λ

5

Example, revisited
Note:

a more compact way to write previous grammar:
E intlit | E - E | E / E | (E)

or

E intlit
| E - E
| E / E
| (E)

A formal definition of CFGs
A CFG consists of

A set of terminals T
A set of non-terminals N
A start symbol S (a non-terminal)
A set of productions:
X → Y1 Y2 … Yn

where X ∈ N and Yi ∈ T ∪ N ∪ {ε}

6

Notational Conventions
In these notes

Non-terminals are written upper-case
Terminals are written lower-case
Start symbol is left-hand side of first
production

The Language of a CFG
The language defined by CFG is set of

strings that can be derived from the
start symbol of grammar

Derivation: Read productions as rules:

X → Y1 … Yn

means X can be replaced by Y1 … Yn

7

Derivation: key idea
1. Begin with string of start symbol “S”
2. Replace any non-terminal X in string

by rhs of some production

X → Y1 … Yn

3. Repeat (2) until no non-terminals in
string

Derivation: an example
CFG:

E id
E E + E
E E * E
E (E)

Is string id * id + id in
language defined by
grammar?

derivation:
E

→ E+E
→ E*E+E
→ id*E+E
→ id*id+E
→ id*id+id

8

Terminals
“Terminals” because there are no rules
for replacing them

Once generated, terminals are
permanent

Therefore, terminals are the tokens of
the language

The Language of a CFG
More formally, write

X1 … Xi … Xn →
X1 … Xi-1Y1 … Ym Xi+1 … Xn

if there is a production

Xi → Y1 … Ym

9

The Language of a CFG
Write

X1 … Xn →* Y1 … Ym

if

X1 … Xn → … → … → Y1 … Ym

in 0 or more steps

The Language of a CFG
Let G be a context-free grammar with

start symbol S. The language of G is:

{a1 … an | S →* a1 … an and
every ai is a terminal}

10

Examples
Strings of balanced parentheses

{(i)i | i ≥ 0}

The grammar:
S → (S)

S → ε
or

S → (S) | ε

Arithmetic Example
Simple arithmetic expressions:

E → E+E | E*E | (E) | id
Some examples of strings in the language:

id
(id)
(id) * id
id + id
id * id
id * (id)

11

Notes
The idea of a CFG is a big step. But:

Membership in a language is “yes” or “no”
we also need parse tree of the input!
furthermore, we must handle errors gracefully

Need an “implementation” of CFG’s,
i.e., the parser
we will create the parser using a parser generator

available generators: CUP, bison, yacc

More Notes
Form of the grammar is important

Many grammars generate the same language
Parsers are sensitive to the form of the grammar

Example:
E E + E

| E – E
| intlit

is not suitable for LL(1) parser (common parser)
Stay tuned, you will soon understand why

12

Derivations and Parse Trees
A derivation is a sequence of productions

S → … → … → …

A derivation can be drawn as a tree
Start symbol is the tree’s root X

For a production X → Y1 … Yn add
children Y1 … Yn to node

Derivation Example
Grammar
E → E+E | E*E | (E) | id

String
id * id + id

13

Derivation Example (Cont.)

E

E

E E

E+

id*

idid

E
→ E+E
→ E*E+E
→ id*E+E
→ id*id+E
→ id*id+id

Derivation in Detail (1)

E(id + id) * ((id) * id)

E

14

Notes on Derivations
A parse tree has

Terminals at the leaves
Non-terminals at the interior nodes

An in-order traversal of the leaves is the
original input

The parse tree shows the association of
operations, the input string does not

Left-most and Right-most
Derivations

The example is a
left-most derivation

At each step, replace
the left-most non-
terminal

There is an
equivalent notion of
a right-most
derivation

E
→ E+E
→ E*E+E
→ id*E+E
→ id*id+E
→ id*id+id

15

Right-most Derivation in Detail

Eid * id + id

E

Derivations and Parse Trees
Note that right-most and left-most
derivations have the same parse tree

The difference is the order in which
branches are added

16

Summary of Derivations
Not just interested in whether s ∈ L(G)

We need a parse tree for s,
(because we need to build the AST)

A derivation defines a parse tree
But one parse tree may have many derivations

Left-most and right-most derivations are
important in parser implementation

Ambiguity
Grammar
E → E+E | E*E | (E) | id

String
id * id + id

17

Ambiguity (Cont.)
This string has two parse trees

E

E

E E

E*

id +

idid

E

E

E E

E+

id*

idid

Example Parse Trees
for each of parse trees, find the
corresponding left-most derivation

for each of parse trees, find the
corresponding right-most derivation

