&Jhe Parser

= Scanner vs. parser
= Why regular expressions are not enough
= Grammars (context-free grammars)
= grammar rules
= derivations
= parse trees
= ambiguous grammars
= useful examples
= Reading:
= Sections 4.1 and 4.2

* The Functionality of the Parser

= Input: sequence of tokens from scanner

= Output: parse tree of the program
= parse tree is generated if the input is a legal program
» if input is an illegal program, syntax errors are issued

= Note:

= Instead of parse tree, some parsers produce directly:
= abstract syntax tree (AST) + symbol table (as in P3), or
= intermediate code, or
= object code

= For the moment, we'll assume that parse tree is generated

Comparison with Lexical

&FAnalysis

Phase Input Output
Scanner String of String of
characters tokens
Parser String of Parse tree
tokens
< Example
* The program:
X*y+z
4 E
* Input to parser: /N
ID TIMES ID PLUS ID E + E
we'll write tokens as follows:
id * id + id N
* E id

* Output of parser:
the parse tree >

Why are regular expressions
&Fnot enough?

= Write an automaton that accepts strings
< "2, @) (@), and (@)

= How about: “a”, “(a)”, “((a))", “(((@)))", ..
"(a)

$ What must parser do?

1. Recognizer: not all strings of tokens are programs
» must distinguish valid and invalid strings of tokens
2. Translator: must expose program structure

e.g., associativity and precedence
hence must return the parse tree

We need:

= A language for describing valid strings of tokens
= context-free grammars
= (analogous to regular expressions in the scanner)

= A method for distinguishing valid from invalid strings of
tokens (and for building the parse tree)

the parser

= (analogous to the state machine in the scanner)

Context-Free Grammars
(CFGs)

= Example: Simple Arithmetic Expressions
= In English:

= An integer is an arithmetic expression.
= If exp; and exp, are arithmetic expressions,
then so are the following:
exp; - exp,
exp, / exp,
(exp;)

= the corresponding CFG: we'll write tokens as follows:
exp > INTLITERAL

E - intlit
exp - exp MINUS exp E>E-E
exp > exp DIVIDE exp E>E/E
exp > LPAREN exp RPAREN E->(E)

Reading the CFG

= The grammar has five terminal symbols:
« intlit, -, /, ()
= terminals of a grammar = tokens returned by the scanner.
= The grammar has one non-terminal symbol:
= E
= non-terminals describe valid sequences of tokens
= The grammar has four productions or rules,
= each of the form: E> a
« left-hand side = a single non-terminal.
= right-hand side = either
sequence of 1 or more terminals and/or non-terminals, or
¢ (an empty production); again, the book uses symbol A

&FExample, revisited

= Note:

= @ more compact way to write previous grammar:
E->intlit | E-E | E/E | (E)

or

E- intlit
| E-E
| E/E
| (E)

$ A formal definition of CFGs

= A CFG consists of
= A set of terminals T
= A set of non-terminals N
= A start symbol S (a non-terminal)
= A set of productions:
X=>Y Y. Y,
where X e Nand Y, e TuU N U {&}

- Notational Conventions

= In these notes
= Non-terminals are written upper-case
= Terminals are written lower-case

= Start symbol is left-hand side of first
production

$ The Language of a CFG

The language defined by CFG is set of
strings that can be derived from the
start symbol of grammar

Derivation: Read productions as rules:

XY, .Y,

means X can be replaced by Y, ... Y,

iDerivation: key idea

1. Begin with string of start symbol “S”

2. Replace any non-terminal X in string
by rhs of some production

XY, .Y

n

3. Repeat (2) until no non-terminals in
string

$ Derivation: an example

CFG: derivation:
E->id E
E>E+E 5 E+E
E>E*E — E*E+E
E>(E) — Id*E+E

Is string id * id + id in ~ !d*!d+!£
— id*id+id

language defined by
grammar?

e | €'Minals

= 'Terminals” because there are no rules
for replacing them

= Once generated, terminals are
permanent

= Therefore, terminals are the tokens of
the language

$ The Language of a CFG

More formally, write

Xy oo X X >
Xy oo XiqYq oo Yo Xipg oo X

if there is a production

&Jhe Language of a CFG

Write

Xieo Xy > oo o> oo Yy Y

in 0 or more steps

The Language of a CFG

Let G be a context-free grammar with
start symbol S. The language of Gis:

{a8;...a,| S—>*a,..a, and
every a. is a terminal}

- EXamples

Strings of balanced parentheses

{() =0}
The grammar:
S — (S)
S—> ¢
or
S—>(5)]¢€

« Arithmetic Example

Simple arithmetic expressions:
E—-E+E|E*E| (E) | id

Some examples of strings in the language:

id

(id)

(id) * id

id + id

id * id

id * (id)

e NOtes
The idea of a CFG is a big step. But:

= Membership in a language is “yes” or “no”
= we also need parse tree of the input!
« furthermore, we must handle errors gracefully

= Need an “implementation” of CFG’s,
= i.e., the parser

= we will create the parser using a parser generator
= available generators: CUP, bison, yacc

-« More Notes

= Form of the grammar is important
= Many grammars generate the same language
= Parsers are sensitive to the form of the grammar

= Example:
E>E+E
| E-E

| intlit

is not suitable for LL(1) parser (common parser)
Stay tuned, you will soon understand why

« D€rivations and Parse Trees

A derivation is a sequence of productions

S ..o..>..

A derivation can be drawn as a tree
= Start symbol is the tree’s root X

= For a production X — Y, ... Y, add
children Y, ... Y|, to node

$ Derivation Example

s Grammar
E—->E+E|E*E| (E) | id

= String
id *id + id

*Derivation Example (Cont.)

§ T
— E+E

— E*E+E E * E
> id*E+E N
— id*id+E E * E id
— id¥id+id | |

id id

Derivation in Detail (1)
(id + id) * ((id) * id)
E

E

- NoOtes on Derivations

= A parse tree has
= Terminals at the leaves
= Non-terminals at the interior nodes

= An in-order traversal of the leaves is the
original input

= The parse tree shows the association of
operations, the input string does not

Left-most and Right-most
* Derivations

= The example is a E
left-most derivation _y E4+E

= At each step, replace — E*E+E
the left-most non-

terminal — Id*E+E
— id*id+E
= There is an — id*id+id

equivalent notion of
a right-most
derivation

&FRight-most Derivation in Detail
id *1d +1d
E

E

L Derivations and Parse Trees

= Note that right-most and left-most
derivations have the same parse tree

= The difference is the order in which
branches are added

iSummary of Derivations

= Not just interested in whether s € L(G)

= We need a parse tree for s,
(because we need to build the AST)

= A derivation defines a parse tree
= But one parse tree may have many derivations

= Left-most and right-most derivations are
important in parser implementation

$‘ Ambiguity

s Grammar
E—->E+E| E*E| (E) | id

= String
id * id + id

&FAmbiguiw (Cont.)

This string has two parse trees

E E
T T
E + E E « E
E =« E id id E + E
\ \ \ \
id id id id

$ Example Parse Trees

= for each of parse trees, find the
corresponding left-most derivation

= for each of parse trees, find the
corresponding right-most derivation

