
1

Ambiguity
Defining
Rewriting:

Expression Grammars
precedence
associativity

IF-THEN-ELSE
the Dangling-ELSE problem

Declarations
Expression Grammars

precedence
Associativity

Readings: Sections 4.2, 4.3

Ambiguity = program
structure not uniquely defined
E → E+E | E*E | (E) | id

String id * id + id has two parse trees:
E

E

E E

E*

id +

idid

E

E

E E

E+

id*

idid

2

Ambiguity
A grammar is ambiguous if, for any string

it has more than one parse tree, or
there is more than one right-most derivation, or
there is more than one left-most derivation

(the three conditions are equivalent)

Ambiguity is BAD
Leaves meaning of some programs ill-defined

Dealing with Ambiguity
There are several ways to handle
ambiguity
We will discuss two of them:

rewriting the grammar
parser-generator declarations

3

Expression Grammars
(precedence)

Rewrite the grammar
use a different nonterminal for each precedence
level
start with the lowest precedence (MINUS)

E E - E | E / E | (E) | id

rewrite to

E E - E | T
T T / T | F
F id | (E)

Example
parse tree for id – id / id

E E - E | T
T T / T | F
F id | (E)

E

E

F F

T
-

id

/

idid

T

F
T T

E

4

Example: Preventing
Ambiguity

Question: can we construct parse tree
for id-id/id that shows the wrong
precedence?

Associativity
The grammar captures operator precedence,
but it is still ambiguous!

fails to express that both subtraction and division
are left associative;

e.g., 5-3-2 is equivalent to: ((5-3)-2) and not to: (5-(3-
2))

Example: two parse trees for the expression
5-3-2 using the grammar given above; one
that correctly groups 5-3, and one that
incorrectly groups 3-2

5

Recursion
Grammar is recursive in nonterminal X if:

X + … X …
+ means “in one or more steps, X derives a sequence

of symbols that includes an X”

Grammar is left recursive in X if:
X + X …

in one or more steps, X derives a sequence of symbols
that starts with an X

A grammar is right recursive in X if:
X + … X

in one or more steps, X derives a sequence of symbols
that ends with an X

How to fix associativity
The grammar given above is both left and
right recursive in nonterminals exp and term

try this: write the derivation steps that show this

To correctly expresses operator associativity:
For left associativity, use left recursion
For right associativity, use right recursion

Here's the correct grammar:
E E – T | T
T T / F | F
F id | (E)

6

Ambiguity: The Dangling Else
Consider the grammar

E → if E then E
| if E then E else E
| print

This grammar is also ambiguous

The Dangling Else: Example
The expression

if E1 then if E2 then E3 else E4

has two parse trees
if

E1 if

E2 E3 E4

if

E1 if

E2 E3

E4

• Typically we want the second form

7

The Dangling Else: A Fix
else matches the closest unmatched then
We can describe this in the grammar

E → MIF /* all then are matched */
| UIF /* some then are unmatched */

MIF → if E then MIF else MIF

| print
UIF → if E then E

| if E then MIF else UIF
Describes the same set of strings

The Dangling Else: Example
Revisited

The expression if E1 then if E2 then E3 else E4

if

E1 if

E2 E3 E4

if

E1 if

E2 E3

E4

• Not valid because the
then expression is not
a MIF

• A valid parse tree
(for a UIF)

8

Precedence and Associativity
Declarations

Instead of rewriting the grammar
Use the more natural (ambiguous) grammar
Along with disambiguating declarations

Most parser generators allow precedence and
associativity declarations to disambiguate
grammars

Examples …

Associativity Declarations
Consider the grammar E → E - E | int
Ambiguous: two parse trees of int - int - int

E

E

E E

E-

int -

intint

E

E

E E

E-

int-

intint

• Left associativity declaration: %left +

9

Precedence Declarations
Consider grammar E → E + E | E * E | int

And the string int + int * int

E

E

E E

E+

int *

intint

E

E

E E

E*

int+

intint
• Precedence declarations: %left +

%left *

