&FAmbiguity

= Defining
= Rewriting:
= Expression Grammars

= precedence
= associativity

=« IF-THEN-ELSE
« the Dangling-ELSE problem
= Declarations

= Expression Grammars
= precedence
= Associativity

= Readings: Sections 4.2, 4.3

Ambiguity = program
< Structure not uniquely defined
E— E+E | E*E | (E) | id

String id * id + id has two parse trees:

E E
T ﬂ\
E + E E = E

iAmbiguity

= A grammar is ambiguous if, for any string
= it has more than one parse tree, or
= there is more than one right-most derivation, or
= there is more than one left-most derivation
(the three conditions are equivalent)

= Ambiguity is BAD
= Leaves meaning of some programs ill-defined

$‘ Dealing with Ambiguity

= There are several ways to handle
ambiguity

= We will discuss two of them:

= rewriting the grammar
= parser-generator declarations

Expression Grammars
= (precedence)

= Rewrite the grammar

= use a different nonterminal for each precedence
level

» start with the lowest precedence (MINUS)

E->E-E| E/E| (E) | id

rewrite to
E>E-E|T
T>T/T|F
F->id | (E)

$ Example

parse tree forid —id /id E

T

E>E-e|]T E - E

T>T/T|F 1

F->id | (E) T A
T T
F | |
|

F F
id \ \
id id

Example: Preventing
iAm biguity
= Question: can we construct parse tree

for id-id/id that shows the wrong
precedence?

w ASSOCiativity

= The grammar captures operator precedence,
but it is still ambiguous!
= fails to express that both subtraction and division
are /eft associative;

= €.g., 5-3-2 is equivalent to: ((5-3)-2) and notto: (5-(3-
2))

= Example: two parse trees for the expression
5-3-2 using the grammar given above; one
that correctly groups 5-3, and one that
incorrectly groups 3-2

« RECUISION

s Grammar is recursive in nonterminal X if:
. XD+ X .

= 2T means “in one or more steps, X derives a sequence
of symbols that includes an X"

s Grammar is left recursive in X if:
. X DX ...

= in one or more steps, X derives a sequence of symbols
that starts with an X

= A grammar is right recursive in X if:
= XDt X

= in one or more steps, X derives a sequence of symbols
that ends with an X

* How to fix associativity

= The grammar given above is both left and
right recursive in nonterminals exp and term
= try this: write the derivation steps that show this
= To correctly expresses operator associativity:
= For left associativity, use left recursion
= For right associativity, use right recursion
= Here's the correct grammar:
E>E-T|T
T>T/FI|F
F>id| (E)

&FAmbiguity: The Dangling Else

= Consider the grammar
E—ifEthenE
| if E then E else E
| print

= This grammar is also ambiguous

$ The Dangling Else: Example

= The expression
if E; then if E, then E; else E,
has two parse trees

if if
/N /\
AT) /n\

E. E; E. E E

+ Typically we want the second form

&Jhe Dangling Else: A Fix

= else matches the closest unmatched then
= We can describe this in the grammar

E—> MIF /* all then are matched */
| UIF /* some then are unmatched */
MIF — if E then MIF else MIF
| print

UIF —» if Ethen E
| if E then MIF else UIF

= Describes the same set of strings

The Dangling Else: Example
« Revisited

= The expression if E; then if E, then E; else E,

if
RN
E, if
E, E; E, Es
* A valid parse tree - Not valid because the
(for a UIF) then expression is not

a MIF

Precedence and Associativity
« Declarations

= Instead of rewriting the grammar
= Use the more natural (ambiguous) grammar
= Along with disambiguating declarations

= Most parser generators allow precedence and
associativity declarations to disambiguate
grammars

= Examples ...

« Associativity Declarations

= Consider the grammar E—-E-E|int
= Ambiguous: two parse trees of int - int - int

E
M\
E - E
/’\ ‘
E _ E int
| |
int int

» Left associativity declaration: %left +

« Precedence Declarations

= Consider grammar E >E+ E|E *E|int
= And the string int + int * int

int E * E
| |

int int
« Precedence declarations: %left +

Toleft *

