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Top-Down Parsing
Top-down parsing methods

Recursive descent
Predictive parsing

Implementation of parsers
Two approaches

Top-down – easier to understand and program 
manually
Bottom-up – more powerful, used by most parser 
generators

Reading: Section 4.4

Intro to Top-Down Parsing

The parse tree is constructed
From the top
From left to right

Terminals are seen in order of 
appearance in the token stream: 
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Recursive Descent Parsing
Consider the grammar

E → T + E | T
T → int  | int * T | ( E )

Token stream is:   int5 * int2
Start with top-level non-terminal E

Try the rules for E in order

Recursive Descent Parsing -
Example

Try E0 → T1 + E2

Then try a rule for T1 → ( E3 )
But ( does not match input token int5

Try T1 → int - Token matches. 
But + after T1 does not match input token *

Try T1 → int * T2
This will match but + after T1 will be unmatched

Has exhausted the choices for T1
Backtrack to choice for E0
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Recursive Descent Parsing -
Example

Try E0 → T1

Follow same steps as before for T1
And succeed with T1 → int * T2 and T2 → int
With the following parse tree

E0

T1

int5 * T2

int2

Recursive Descent Parser -
Preliminaries

Let TOKEN be the type of tokens
Special tokens INT, OPEN, CLOSE, PLUS, 
TIMES

Let the global next point to the next 
token
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Recursive Descent Parser –
Implementing Productions

Define boolean functions that check the token 
string for a match of

A given token terminal
bool term(TOKEN tok) { return *next++ ==

tok; }
A given production of S (the nth)     

bool Sn() { … }
Any production of S:

bool S() { … }

These functions advance next

Recursive Descent Parser –
Implementing Productions

For production E → T
bool E1() { return T(); }

For production E → T + E
bool E2() { return T() && term(PLUS) && E(); }

For all productions of E (with backtracking)
bool E() {

TOKEN *save = next;
return    (next = save, E1()) 

|| (next = save,  E2());   }
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Recursive Descent Parser –
Implementing Productions

Functions for non-terminal T
bool T1() { return term(OPEN) && E() && term(CLOSE); 

}
bool T2() { return term(INT) && term(TIMES) && T(); }
bool T3() { return term(INT); }

bool T() {
TOKEN *save = next;
return    (next = save, T1()) 

|| (next = save,  T2()) 
|| (next = save,  T3()); }

Recursive Descent Parsing -
Notes

To start the parser 
Initialize next to point to first token
Invoke E()

Notice how this simulates our previous 
example

Easy to implement by hand
But does not always work …
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When Recursive Descent Does 
Not Work

Consider a production S → S a
bool S1() { return S() && term(a); } 
bool S() { return  S1(); }

S() will get into an infinite loop

left-recursive grammar has a non-terminal S
S →+ Sα for some α

Recursive descent does not work in such 
cases

Elimination of Left Recursion
Consider the left-recursive grammar

S → S α | β

S generates all strings starting with a β
and followed by a number of α

Can rewrite using right-recursion
S → β S’
S’ → α S’ | ε
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More Elimination of Left-
Recursion

In general
S → S α1 | … | S αn | β1 | … | βm

All strings derived from S start with one 
of β1,…,βm and continue with several 
instances of α1,…,αn

Rewrite as
S → β1 S’ | … | βm S’
S’ → α1 S’ | … | αn S’ | ε

General Left Recursion
The grammar 

S → A α | δ
A → S β

is also left-recursive because

S →+ S β α

This left-recursion can also be eliminated
See book, Section 4.3 for general algorithm
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Summary of Recursive 
Descent

Simple and general parsing strategy
Left-recursion must be eliminated first
… but that can be done automatically

Unpopular because of backtracking
Thought to be too inefficient

In practice, backtracking is eliminated 
by restricting the grammar

Predictive Parsers
Like recursive-descent but parser can 
“predict” which production to use

By looking at the next few tokens
No backtracking 

Predictive parsers accept LL(k) grammars
L means “left-to-right” scan of input
L means “leftmost derivation”
k means “predict based on k tokens of lookahead”

In practice, LL(1) is used
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LL(1) Languages
In recursive-descent, for each non-terminal 
and input token, may be a choice of 
production
LL(1) means that for each non-terminal and 
token there is only one production
Can be specified via 2D tables

One dimension for current non-terminal to expand
One dimension for next token
A table entry contains  one production

Predictive Parsing and Left 
Factoring

Recall the grammar
E → T + E | T
T → int  | int * T | ( E )

Hard to predict because
For T two productions start with int
For E it is not clear how to predict

A grammar must be left-factored before use 
for predictive parsing
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Left-Factoring Example
Recall the grammar

E → T + E | T
T → int  | int * T | ( E )

• Factor out common prefixes of productions
E → T X
X → + E | ε
T → ( E ) | int Y
Y → * T | ε

LL(1) Parsing Table Example
Left-factored grammar
E → T X                               X → + E | ε
T → ( E ) | int Y                   Y → * T | ε

LL(1) parsing table:

εεε* T Y
( E )int YT

εε+ EX
T XT XE

$)(+*int
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LL(1) Parsing Table Example
Consider the [E, int] entry

“When current non-terminal is E and next 
input is int, use production  E → T X”
This production can generate an int in the 
first place

Consider the [Y,+] entry
“When current non-terminal is Y and 
current token is +, get rid of Y”
Y can be followed by + only in a derivation 
in which  Y → ε

LL(1) Parsing Tables - Errors
Blank entries indicate error situations

Consider the [E,*] entry
“There is no way to derive a string starting 
with * from non-terminal E”
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Using Parsing Tables
Method similar to recursive descent, except

For each non-terminal S
We look at the next token a
And chose the production shown at [S,a]

We use a stack to keep track of pending non-
terminals
We reject when we encounter an error state
We accept when we encounter end-of-input  

LL(1) Parsing Algorithm
initialize stack = <S $> and next 
repeat

case stack of
<X, rest>  : if T[X,*next] = Y1…Yn

then stack ← <Y1… Yn rest>;
else  error ();   

<t, rest>   : if t == *next ++ 
then  stack ← <rest>;
else error ();

until stack == < >
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LL(1) Parsing Example
Stack           Input            Action
E $            int * int $      T X
T X $           int * int $      int Y
int Y X $       int * int $ terminal
Y X $           * int $          * T
* T X $         * int $ terminal
T X $           int $            int Y
int Y X $       int $ terminal
Y X $           $                ε
X $             $                ε
$               $ ACCEPT

Constructing Parsing Tables
LL(1) languages are those defined by a 
parsing table for the LL(1) algorithm
No table entry can be multiply defined

We want to generate parsing tables 
from CFG
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Constructing Parsing Tables
If A → α, where in the line of A we place α ?
In the column of t where t can start a string 
derived from α

α →* t β
We say that t ∈ First(α)

In column of t if α is ε and t can follow an A
S →* β A t δ
We say t ∈ Follow(A)

Computing First Sets
Definition:    First(X) = { t | X →* tα} ∪ {ε | X →* ε}

Algorithm sketch (see book for details):
1. for all terminals t do   First(t) { t } 
2. for each production X → ε do  First(X) { ε }
3. if X → A1 … An α and  ε ∈ First(Ai), 1 ≤ i ≤ n  do

• add First(α)  to  First(X) 

4. for each X → A1 … An s.t. ε ∈ First(Ai), 1 ≤ i ≤ n do
• add ε to First(X) 

5. repeat steps 4 & 5 until no First set can be grown
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First Sets - Example
Recall the grammar 

E → T X                               X → + E | ε
T → ( E ) | int Y                   Y → * T | ε

First sets
First( ( ) = { ( }            First( T ) = {int, ( }
First( ) ) = { ) }            First( E ) = {int, ( }
First( int ) = { int }       First( X ) = {+, ε }
First( + ) = { + }          First( Y ) = {*, ε }
First( * ) = { * }

Computing Follow Sets
Definition:

Follow(X) = { t | S →* β X t δ }

Intuition
If S is the start symbol then $ ∈ Follow(S)

If X → A B then First(B) ⊆ Follow(A) and 
Follow(X) ⊆ Follow(B)

Also if B →* ε then Follow(X) ⊆ Follow(A)
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Computing Follow Sets (Cont.)
Algorithm sketch:

1. Follow(S)  { $ }
2. For each production A → α X β

• add  First(β) - {ε}  to  Follow(X) 
3. For each A → α X β where ε ∈ First(β) 

• add  Follow(A)  to  Follow(X)
repeat step(s) 2-3 until no Follow set 
grows

Follow Sets. Example
Recall the grammar 

E → T X                               X → + E | ε
T → ( E ) | int Y                   Y → * T | ε

Follow sets
Follow( + ) = { int, ( }    Follow( * ) = { int, ( } 
Follow( ( ) = { int, ( }     Follow( E ) = {), $} 
Follow( X ) = {$, ) }       Follow( T ) = {+, ) , $}
Follow( ) ) = {+, ) , $}     Follow( Y ) = {+, ) , $}

Follow( int) = {*, +, ) , $}
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Constructing LL(1) Parsing 
Tables

Construct a parsing table T for CFG G

For each production  A → α in G do:
For each terminal t ∈ First(α) do

T[A, t] = α
If ε ∈ First(α), for each t ∈ Follow(A) do

T[A, t] = α
If ε ∈ First(α) and $ ∈ Follow(A) do

T[A, $] = α

Notes on LL(1) Parsing Tables
If any entry is multiply defined then G is 
not LL(1)

If G is ambiguous
If G is left recursive
If G is not left-factored
And in other cases as well

Most programming language grammars 
are not LL(1)
There are tools that build LL(1) tables
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Predictive Parsing Summary
First and Follow sets are used to construct 
predictive tables

For non-terminal A and input t, 
use a production    A → α   where   t ∈ First(α)

For non-terminal A and input t, 
if ε ∈ First(A) and  t ∈ Follow(α), then 
use a production  A → α   where  ε ∈ First(α)

We’ll see First and Follow sets again . . .


