Evaluating Hypotheses

- Sample error, true error
- Confidence intervals for observed hypothesis error
- Estimators
- Binomial distribution, Normal distribution,
 Central Limit Theorem
- Paired t-tests
- Comparing Learning Methods

Problems Estimating Error

1. *Bias*: If *S* is training set, *error*_S(*h*) is optimistically biased

$$bias \equiv E[error_S(h)] - error_D(h)$$

For unbiased estimate, *h* and *S* must be chosen independently

2. *Variance*: Even with unbiased S, $error_S(h)$ may still vary from $error_D(h)$

Two Definitions of Error

The true error of hypothesis h with respect to target function f and distribution D is the probability that h will misclassify an instance drawn at random according to D.

$$error_D(h) \equiv \Pr_{x \in D}[f(x) \neq h(x)]$$

The sample error of h with respect to target function f and data sample S is the proportion of examples h misclassifies

$$error_{S}(h) \equiv \frac{1}{n} \sum_{x \in S} \delta(f(x) \neq h(x))$$

where $\delta(f(x) \neq h(x))$ is 1 if $f(x) \neq h(x)$, and 0 otherwise

How well does $error_S(h)$ estimate $error_D(h)$?

Example

Hypothesis h misclassifies 12 of 40 examples in S.

$$error_{S}(h) = \frac{12}{40} = .30$$

What is $error_D(h)$?

Estimators

Experiment:

- 1. Choose sample *S* of size *n* according to distribution *D*
- 2. Measure $error_S(h)$

 $error_S(h)$ is a random variable (i.e., result of an experiment)

 $error_S(h)$ is an unbiased estimator for $error_D(h)$

Given observed $error_S(h)$ what can we conclude about $error_D(h)$?

Confidence Intervals

If

- S contains n examples, drawn independently of *h* and each other
- $n \ge 30$

Then

• With approximately N% probability, $error_D(h)$ lies in interval

$$error_{S}(h) \pm z_{N} \sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}}$$

where

N%:	50%	68%	80%	90%	95%	98%	99%
z_N :	0.67	1.00	1.28	1.64	1.96	2.33	2.53

Confidence Intervals

If

- S contains n examples, drawn independently of h and each other
- $n \ge 30$

Then

• With approximately 95% probability, $error_D(h)$ lies in interval

$$error_{S}(h) \pm 1.96 \sqrt{\frac{error_{S}(h)(1-error_{S}(h))}{n}}$$

*error*_S(h) is a Random Variable

- Rerun experiment with different randomly drawn S (size n)
- Probability of observing r misclassified examples:

$$P(r) = \frac{n!}{r!(n-r)!} error_D(h)^r (1 - error_D(h))^{n-r}$$

Binomial Probability Distribution

$$P(r) = \frac{n!}{r!(n-r)!} p^{r} (1-p)^{n-r}$$

Probabilty P(r) of r heads in n coin flips, if p = Pr(heads)

- Expected, or mean value of $X : E[X] = \sum_{i=0}^{n} iP(i) = np$
- Variance of $X: Var(X) \equiv E[(X E[X])^2] = np(1-p)$
- Standard deviation of $X : \sigma_X = \sqrt{E[(X E[X])^2]} = \sqrt{np(1-p)}$

Normal Probability Distribution

$$P(r) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^{2}}$$

The probability that X will fall into the interval (a,b) is given by

$$\int_a^b p(x)dx$$

- Expected, or mean value of $X : E[X] = \mu$
- Variance of $X : Var(X) = \sigma^2$
- Standard deviation of $X : \sigma_X = \sigma$

Normal Distribution Approximates Binomial

 $error_s(h)$ follows a Binomial distribution, with

- $\operatorname{mean}\mu_{\operatorname{error}_{S}(h)} = \operatorname{error}_{D}(h)$
- standard deviation

$$\sigma_{error_{S}(h)} = \sqrt{\frac{error_{D}(h)(1 - error_{D}(h))}{n}}$$

Approximate this by a Normal distribution with

- $\operatorname{mean}\mu_{\operatorname{error}_S(h)} = \operatorname{error}_D(h)$
- standard deviation

$$\sigma_{error_S(h)} \approx \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$

Normal Probability Distribution

80% of area (probability) lies in $\mu \pm 1.28\sigma$ N% of area (probability) lies in $\mu \pm z_N \sigma$

N%:	50%	68%	80%	90%	95%	98%	99%
z_N :	0.67	1.00	1.28	1.64	1.96	2.33	2.53

Confidence Intervals, More Correctly

If

- S contains n examples, drawn independently of h and each other
- $n \ge 30$

Then

With approximately 95% probability, $error_s(h)$ lies in interval

$$error_D(h) \pm 1.96 \sqrt{\frac{error_D(h)(1 - error_D(h))}{n}}$$

equivalently,
$$error_D(h)$$
 lies in interval
$$error_S(h) \pm 1.96 \sqrt{\frac{error_D(h)(1 - error_D(h))}{n}}$$

which is approximately

$$error_{S}(h) \pm 1.96 \sqrt{\frac{error_{S}(h)(1-error_{S}(h))}{n}}$$

Calculating Confidence Intervals

- 1. Pick parameter *p* to estimate
- $error_D(h)$
- 2. Choose an estimator
- $error_S(h)$
- 3. Determine probability distribution that governs estimator
- $error_S(h)$ governed by Binomial distribution, approximated by Normal when $n \ge 30$
- 4. Find interval (L, U) such that N% of probability mass falls in the interval
- Use table of z_N values

Central Limit Theorem

Consider a set of independent, identically distributed random variables $Y_1 ... Y_n$, all governed by an arbitrary probability distribution with mean μ and finite variance σ^2 . Define the sample mean

$$\overline{Y} \equiv \frac{1}{n} \sum_{i=1}^{n} Y_i$$

Central Limit Theorem. As $n \to \infty$, the distribution governing \overline{Y} approaches a Normal distribution, with mean μ and variance $\frac{\sigma^2}{n}$.

Difference Between Hypotheses

Test h_1 on sample S_1 , test h_2 on S_2

1. Pick parameter to estimate

$$d \equiv error_D(h_1) - error_D(h_2)$$

2. Choose an estimator

$$d \equiv error_{S_1}(h_1) - error_{S_2}(h_2)$$

3. Determine probability distribution that governs estimator

$$\sigma_{d} \approx \sqrt{\frac{error_{S_{1}}(h_{1})(1 - error_{S_{1}}(h_{1}))}{n_{1}} + \frac{error_{S_{2}}(h_{2})(1 - error_{S_{2}}(h_{2}))}{n_{2}}}$$

4. Find interval (L, U) such that N% of probability mass falls in the interval

$$\hat{d} \pm z_{N} \sqrt{\frac{error_{S_{1}}(h_{1})(1 - error_{S_{1}}(h_{1}))}{n_{1}} + \frac{error_{S_{2}}(h_{2})(1 - error_{S_{2}}(h_{2}))}{n_{2}}}$$

Paired t test to Compare h_A, h_B

- 1. Partition data into k disjoint test sets $T_1, T_2, ..., T_k$ of equal size, where this size is at least 30.
- 2. For *i* from 1 to *k* do

$$\delta_i \leftarrow error_{T_i}(h_A) - error_{T_i}(h_B)$$

3. Return the value d, where

$$\overline{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_{i}$$

N% confidence interval estimate for d:

$$\overline{\delta} \pm t_{N,k-1} s_{\overline{\delta}}$$

$$s_{\overline{\delta}} \equiv \sqrt{\frac{1}{k(k-1)} \sum_{i=1}^{k} (\delta_i - \overline{\delta})^2}$$

Note δ_i approximately Normally distributed

Comparing Learning Algorithms L_A and L_B

- 1. Partition data D_0 into k disjoint test sets $T_1, T_2, ..., T_k$ of equal size, where this size is at least 30.
- 2. For *i* from 1 to k, do use T_i for the test set, and the remaining data for training set S_i
 - $\bullet \quad S_i \leftarrow \{D_0 T_i\}$
 - $h_A \leftarrow L_A(S_i)$
 - $h_B \leftarrow L_B(S_i)$
 - $\delta_i \leftarrow error_{T_i}(h_A) error_{T_i}(h_B)$
- 3. Return the value $\overline{\delta}$, where

$$\overline{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_{i}$$

Comparing Learning Algorithms L_A and L_B

What we would like to estimate:

$$E_{S \subset D}[error_D(L_A(S)) - error_D(L_B(S))]$$

where L(S) is the hypothesis output by learner L using training set S

i.e., the expected difference in true error between hypotheses output by learners L_A and L_B , when trained using randomly selected training sets S drawn according to distribution D.

But, given limited data D_0 , what is a good estimator?

Could partition D_0 into training set S and training set T_0 and measure

$$error_{T_0}(L_A(S_0)) - error_{T_0}(L_B(S_0))$$

even better, repeat this many times and average the results (next slide)

Comparing Learning Algorithms L_A and L_B

Notice we would like to use the paired t test on $\overline{\delta}$ to obtain a confidence interval

But not really correct, because the training sets in this algorithm are not independent (they overlap!)

More correct to view algorithm as producing an estimate of

$$E_{S \subset D_0}[error_D(L_A(S)) - error_D(L_B(S))]$$

instead of

$$E_{S\subset D}[error_D(L_A(S)) - error_D(L_B(S))]$$

but even this approximation is better than no comparison