Evaluating Hypotheses

- · Sample error, true error
- · Confidence intervals for observed hypothesis error
- Estimators
- Binomial distribution, Normal distribution, Central Limit Theorem
- · Paired t-tests
- · Comparing Learning Methods

CS 5751 Machine Learning Chapter 5 Evaluating Hypotheses

Problems Estimating Error

1. *Bias*: If *S* is training set, *error*_S(*h*) is optimistically biased

$$bias \equiv E[error_s(h)] - error_D(h)$$

For unbiased estimate, h and S must be chosen independently

 Variance: Even with unbiased S, error_S(h) may still vary from error_D(h)

CS 5751 Machine Learning Chapter 5 Evaluating Hypotheses

Two Definitions of Error

The **true error** of hypothesis *h* with respect to target function *f* and distribution *D* is the probability that *h* will misclassify an instance drawn at random according to *D*.

$$error_D(h) \equiv \Pr_{x \in D} [f(x) \neq h(x)]$$

The sample error of h with respect to target function f and data sample S is the proportion of examples h misclassifies

$$error_S(h) = \frac{1}{n} \sum_{x \in S} \delta(f(x) \neq h(x))$$

where $\delta(f(x) \neq h(x))$ is 1 if $f(x) \neq h(x)$, and 0 otherwise

How well does $error_S(h)$ estimate $error_D(h)$?

CS 5751 Machine Learning Chapter 5 Evaluating Hypotheses

Example

Hypothesis *h* misclassifies 12 of 40 examples in *S*.

$$error_{S}(h) = \frac{12}{40} = .30$$

What is $error_D(h)$?

CS 5751 Machine Learning

Chapter 5 Evaluating Hypotheses

Estimators

Experiment:

- 1. Choose sample *S* of size *n* according to distribution *D*
- 2. Measure error_s(h)

error_S(h) is a random variable (i.e., result of an experiment)

 $error_S(h)$ is an unbiased estimator for $error_D(h)$

Given observed $error_S(h)$ what can we conclude about $error_D(h)$?

CS 5751 Machine

Chapter 5 Evaluating Hypotheses

Confidence Intervals

If

- S contains n examples, drawn independently of *h* and each other
- n ≥ 30

Then

 With approximately N% probability, error_D(h) lies in interval

nterval
$$error_{S}(h) \pm z_{N} \sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}}$$

where

N%: 50% 68% 80% 90% 95% 98% 99% z_N: 0.67 1.00 1.28 1.64 1.96 2.33 2.53

CS 5751 Machine

Chapter 5 Evaluating Hypotheses

Confidence Intervals

If

- S contains n examples, drawn independently of h and each other
- n ≥ 30

Then

 With approximately 95% probability, error_D(h) lies in interval

$$error_{S}(h) \pm 1.96\sqrt{\frac{error_{S}(h)(1-error_{S}(h))}{n}}$$

CS 5751 Machine Learning Chapter 5 Evaluating Hypotheses

error_S(h) is a Random Variable • Rerun experiment with different randomly drawn S (size n) • Probability of observing r misclassified examples: Binomial distribution for n=40, p=0.30.04 0.02 0.08 0.08 0.04 0.02 0.09 1 | P(r) = $\frac{n!}{r!(n-r)!}$ error_D(h)^r(1-error_D(h))^{n-r} CS 5751 Machine Chapter 5 Evaluating Hypotheses

Binomial Probability Distribution

$$P(r) = \frac{n!}{r!(n-r)!} p^{r} (1-p)^{n-r}$$

11

Probabilty P(r) of r heads in n coin flips, if p = Pr (heads)

- Expected, or mean value of $X : E[X] \equiv \sum_{i=0}^{n} iP(i) = np$
- Variance of X: $Var(X) = E[(X E[X])^2] = np(1-p)$
- Standard deviation of X: $\sigma_X = \sqrt{E[(X E[X])^2]} = \sqrt{np(1-p)}$

CS 5751 Machine Learning

Chapter 5 Evaluating rrypotheses

Normal Probability Distribution

 $P(r) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$

12

The probability that *X* will fall into the interval (a,b) is given by $\int_{a}^{b} p(x)dx$

- Expected, or mean value of $X : E[X] = \mu$
- Variance of $X : Var(X) = \sigma^2$
- Standard deviation of $X : \sigma_X = \sigma$

CS 5751 Machine Learning Chapter 5 Evaluating Hypotheses

Normal Distribution Approximates Binomial

error_s(h) follows a Binomial distribution, with

- $\operatorname{mean}\mu_{error_{c}(h)} = error_{D}(h)$
- standard deviation

$$\sigma_{error_S(h)} = \sqrt{\frac{error_D(h)(1-error_D(h))}{n}}$$

Approximate this by a Normal distribution with

- $\operatorname{mean}\mu_{error_{S}(h)} = error_{D}(h)$
- · standard deviation

$$\sigma_{error_S(h)} \approx \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$

CS 5751 Machine

Chapter 5 Evaluating Hypotheses

Normal Probability Distribution

80% of area (probability) lies in $\mu \pm 1.28\sigma$ N% of area (probability) lies in $\mu \pm z_N \sigma$

N%: 50% 68% 80% 90% 95% 98% 99% z_N: 0.67 1.00 1.28 1.64 1.96 2.33 2.53

CS 5751 Machine

Chapter 5 Evaluating Hypotheses

Confidence Intervals, More Correctly

If

- S contains n examples, drawn independently of h and each
- n ≥ 30

- With approximately 95% probability, error_S(h) lies in $error_D(h) \pm 1.96 \sqrt{\frac{error_D(h)(1 - error_D(h))}{error_D(h)}}$
- equivalently, error_D(h) lies in interval $error_{S}(h) \pm 1.96 \sqrt{\frac{error_{D}(h)(1 - error_{D}(h))}{error_{D}(h)(1 - error_{D}(h))}}$
- which is approximately

error_S(h) ± 1.96
$$\sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$

CS 5751 Machine Learning

Chapter 5 Evaluating Hypotheses

13

17

Calculating Confidence Intervals

- 1. Pick parameter p to estimate
- error_D(h)
- 2. Choose an estimator
- error_S(h)
- 3. Determine probability distribution that governs estimator
- error_s(h) governed by Binomial distribution, approximated by Normal when $n \ge 30$
- 4. Find interval (L, U) such that N% of probability mass falls in the interval
- Use table of z_N values

CS 5751 Machine Learning

Chapter 5 Evaluating Hypotheses

14

Central Limit Theorem

Consider a set of independent, identically distributed random variables $Y_1 ... Y_n$, all governed by an arbitrary probability distribution with mean μ and finite variance σ^2 . Define the sample mean

$$\overline{Y} \equiv \frac{1}{n} \sum_{i=1}^{n} Y_{i}$$

Central Limit Theorem. As $n \to \infty$, the distribution governing \overline{Y} approaches a Normal distribution, with mean μ and variance $\frac{\sigma^2}{}$

CS 5751 Machine

Chapter 5 Evaluating Hypotheses

Difference Between Hypotheses

Test h_1 on sample S_1 , test h_2 on S_2

1. Pick parameter to estimate $d \equiv error_D(h_1) - error_D(h_2)$

2. Choose an estimator

 $d \equiv error_{S_1}(h_1) - error_{S_2}(h_2)$

3. Determine probability distribution that governs estimator

Determine probability distribution that governs estimator
$$\sigma_{d} \approx \sqrt{\frac{error_{S_1}(h_1)(1 - error_{S_1}(h_1))}{n_1} + \frac{error_{S_2}(h_2)(1 - error_{S_2}(h_2))}{n_2}}$$

4. Find interval (L, U) such that N% of probability mass falls

$$\hat{d} \pm z_{N} \sqrt{\frac{error_{S_{1}}(h_{1})(1 - error_{S_{1}}(h_{1}))}{n_{1}} + \frac{error_{S_{2}}(h_{2})(1 - error_{S_{2}}(h_{2}))}{n_{2}}}$$

Paired t test to Compare h_A, h_B

- 1. Partition data into k disjoint test sets $T_1, T_2, ..., T_k$ of equal size, where this size is at least 30.
- 2. For i from 1 to k do
 - $\delta_i \leftarrow error_T(h_A) error_T(h_B)$
- 3. Return the value d, where

$$\overline{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

N% confidence interval estimate for d:

$$\overline{\delta} \pm t_{N,k-1} s_{\overline{\delta}}$$

$$s_{\overline{\delta}} \equiv \sqrt{\frac{1}{k(k-1)} \sum_{i=1}^{k} (\delta_i - \overline{\delta}_i)^2}$$

Note δ_i approximately Normally distributed

CS 5751 Machine

Chapter 5 Evaluating Hypotheses

Comparing Learning Algorithms L_A and L_B

- 1. Partition data D_0 into k disjoint test sets $T_1, T_2, ..., T_k$ of equal size, where this size is at least 30.
- 2. For i from 1 to k, do

use T_i for the test set, and the remaining data for training set S_i

- $S_i \leftarrow \{D_0 T_i\}$
- $h_A \leftarrow L_A(S_i)$
- $h_B \leftarrow L_B(S_i)$
- $\delta_i \leftarrow error_T(h_A) error_T(h_B)$
- 3. Return the value $\overline{\delta}$, where

$$\overline{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_{i}$$

CS 5751 Machine

Chapter 5 Evaluating Hypotheses

18

Comparing Learning Algorithms L_A and L_B

What we would like to estimate:

 $E_{S \subset D}[error_D(L_A(S)) - error_D(L_B(S))]$

where L(S) is the hypothesis output by learner L using training set S

i.e., the expected difference in true error between hypotheses output by learners L_A and L_B , when trained using randomly selected training sets \dot{S} drawn according to distribution D.

But, given limited data D_0 , what is a good estimator?

Could partition D_θ into training set S and training set T_θ and measure

$$error_{T_0}(L_A(S_0)) - error_{T_0}(L_B(S_0))$$

even better, repeat this many times and average the results (next slide)

CS 5751 Machine Learning

Chapter 5 Evaluating Hypotheses

19

Comparing Learning Algorithms L_A and L_B

Notice we would like to use the paired t test on $\overline{\delta}$ to obtain a confidence interval

But not really correct, because the training sets in this algorithm are not independent (they overlap!)

More correct to view algorithm as producing an estimate of

$$E_{S \subset D_0}[error_D(L_A(S)) - error_D(L_B(S))]$$

instead of

 $E_{S\subset D}[error_D(L_A(S)) - error_D(L_B(S))]$ but even this approximation is better than no comparison

CS 5751 Machine Learning

Chapter 5 Evaluating Hypotheses

20