Bayesian Learning

* Bayes Theorem

« MAP, ML hypotheses

 MAP learners

* Minimum description length principle
* Bayes optimal classifier

* Naive Bayes learner

« Bayesian belief networks
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Two Roles for Bayesian Methods

Provide practical learning algorithms:
* Naive Bayes learning
» Bayesian belief network learning

* Combine prior knowledge (prior probabilities)
with observed data

Requires prior probabilities:
* Provides useful conceptual framework:

* Provides “gold standard” for evaluating other
learning algorithms

* Additional insight into Occam’s razor
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Bayes Theorem

P(D | h)P(h)
P(D)

P(h| D)=

P(h) = prior probability of hypothesis /

P(D) = prior probability of training data D
P(h|D) = probability of 4 given D
P(D|h) = probability of D given &
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Choosing Hypotheses
P(D|h)P(h)

P(D)
Generally want the most probable hypothesis given the
training data

P(h| D)=

Maximum a posteriori hypothesis h,,,p:
h,,» =argmax P(h| D)

heH
_ argmax P(D|h)P(h)
heH P(D)
=argmax P(D | h)P(h)

heH

It we assume P(h,)=P(h,) then can further simplify, and
choose the Maximum likelihood (ML) hypothesis

h,, =argmax P(D |h,)

h,eH
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Bayes Theorem

Does patient have cancer or not?

A patient takes a lab test and the result comes back positive.
The test returns a correct positive result in only 98% of the
cases 1n which the disease 1s actually present, and a correct
negative result in only 97% of the cases in which the
disease is not present. Furthermore, 0.8% of the entire
population have this cancer.

P(cancer) = P(—cancer) =

P(+|cancer) = P(-|cancer) =

P(+|—cancer) = P(-|—cancer) =

P(cancer|+) =

P(—cancer|+) =
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Some Formulas for Probabilities

* Product rule: probability P(4 A B) of a
conjunction of two events 4 and B:

P(A A B) = P(A|B)P(B) = P(B|A)P(A)

* Sum rule: probability of disjunction of two events
A and B:

P v B) =P(A) + P(B) - P(A A B)
» Theorem of total probability: if events A,...,A

are mutually exclusive with 2. P(4)=1 , then

n

P(B) = Z P(B| 4)P(4)

CS 5751 Machine Chapter 6 Bayesian Learning
Learning



Brute Force MAP Hypothesis Learner

1. For each hypothesis 4 1n H, calculate the posterior
probability
P(D|h)P(h)

P(h| D)= PD)

2. Output the hypothesis #,,,, with the highest
posterior probability

hy,» =argmax P(h| D)

heH
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Relation to Concept Learning

Consider our usual concept learning task
* 1nstance space X, hypothesis space H, training
examples D

» consider the FindS learning algorithm (outputs

most specific hypothesis from the version space

What would Bayes rule produce as the MAP
hypothesis?

Does FindS output a MAP hypothesis?
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Relation to Concept Learning

Assume fixed set of instances (x,,...,x,,)
Assume D i1s the set of classifications
D = (c(x,),...,c(x,))

Choose P(D|h):

 P(D|h) =1 1if h consistent with D

* P(D|h) =0 otherwise

Choose P(h) to be uniform distribution
« P(h)=1/|H| forall hin H

Then

(1

P(h| D) ={"ns] |
0 otherwise

i1f /1 1s consistent with D

\
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Learning a Real Valued Function

y

Consider any real-valued target function f

Training examples (x,d;), where d; 1s noisy training value

*d; = f(x) T e

* ¢, 1s random variable (noise) drawn independently for each
x; according to some Gaussian distribution with mean = 0

Then the maximum likelihood hypothesis #,,, 1s the one that

minimizes the sum of squared errors:

m

h,, =argmin Z (d. —h(x,))’

heH =
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[Learning a Real Valued Function

h,, =arg max p(D]h)

= arg maXHp(d | h)

heH
—argmaxn% 2(d i ))Z
hett i=1 2no 2
Maximize natural log of this instead ..
1 d.—h(x,)
h,, =argmax In
" el \[2nG * 2( Y j
(a’ — h(x, )j
= arg max——
heH 2 o

= argmax—(d. — h(x,))’

heH
= argmin(d, - h(x,))’
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Minimum Description Length Principle

Occam’s razor: prefer the shortest hypothesis
MDL: prefer the hypothesis /4 that minimizes
My, = arg r}ggl Ley(h)+ L, (D h)

where L(x) 1s the description length of x under
encoding C

Example:

« H = decision trees, D = training data labels
* Lq;(h) 1s # bits to describe tree

* Lq,(DJh) 1s #bits to describe D given /

— Note L, (D|h) = 0 if examples classified perfectly by
h. Need only describe exceptions

* Hence h,,,,, trades off tree size for training errors
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Minimum Description Length Principle
h,,,» =argmax P(D| h)P(h)

heH

=argmax log, P(D | h)+log, P(h)

heH

= argmin ~log, P(D | h)-log, P(h) (1)
Interesting fact from information theory:

The optimal (shortest expected length) code for
an event with probability p 1s log,p bits.

So interpret (1):

-log,P(h) 1s the length of /2 under optimal code

-log,P(D|h) 1s length of D given £ in optimal code

— prefer the hypothesis that minimizes
length(h)+length(misclassifications)
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Bayes Optimal Classifier

Bayes optimal classification
argmax »_ P(v,|h)P(h;| D)
h.eH

v, eV <
Example:
P(h,|D)=.4, P(-|h,)=0, P(+|h;)=1
P(h,|D)=.3, P(-|h,)=1, P(+|h,)=0
P(h,|D)=.3, P(-|h;)=1, P(+|h,)=0
therefore
> P(+|h)P(h, | D) = .4
h,eH
> P(~|h)P(h| D)= 6
h.eH
and
arg max hZ;[P(vj | h)P(h; | D) = -
CS 5751 Machine "~ Chapter 6 Bayesian Learning

Learning

14



(G1bbs Classifier

Bayes optimal classifier provides best result, but can be
expensive 1f many hypotheses.

Gibbs algorithm:
1. Choose one hypothesis at random, according to P(h|D)
2. Use this to classify new instance

Surprising fact: assume target concepts are drawn at random
from H according to priors on /. Then:

E[error gy, <2E[error BayesOptimal]
Suppose correct, uniform prior distribution over H, then
* Pick any hypothesis from VS, with uniform probability
 [ts expected error no worse than twice Bayes optimal
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Naive Bayes Classifier

Along with decision trees, neural networks, nearest
neighor, one of the most practical learning
methods.

When to use
* Moderate or large training set available

 Attributes that describe instances are conditionally
independent given classification

Successful applications:
* Diagnosis

* (Classifying text documents
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Naive Bayes Classifier

Assume target function 7. X—V, where each instance
x described by attributed (a,,a,, ...,a,).

Most probable value of f(x) 1s:

Viup =argmax P(v; | a,a,,...,a,)

vjeV

P(a,,a,,...a,|v,)P(v,)
= arg max

vV P(a,,a,,...,a,)

=argmax P(a,,a,,....,a, |v,)P(v;)

vjeV

Naive Bayes assumption:
P(a,,a,,....,a,|v;)= HP(al. [v;)
which gives "
Naive Bayes classifier: vy; =arg max P(v, )H P(a;|v;)
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Naive Bayes Algorithm
Naive Bayes Learn(examples)
For each target valuev,
P(v, )« estimate P(v,)
For each attribute value a, of each attribute a

P(a|v;) <« estimate P(ajv;)

Classify New Instance(x)

Vg = argmaxﬁ(vj) Hf’(al.|vj)

v.elV
J a;ex
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Naive Bayes Example

Consider CoolCar again and new instance
(Color=Blue, Type=SUV,Doors=2,Tires=WhiteW)

Want to compute
Vs =argmax P(v))| | P(a,v))

P(+)*P(Blue[+)*P(SUV|+)*P(2|+)*P(WhiteW|+)=

5/14 % 1/5 * 2/5 * 4/5 * 3/5 = 0.0137
P(-)*P(Blue|-)*P(SUV|-)*P(2|-)*P(WhiteW|-)=
0/14 * 3/9 * 4/9 * 3/9 * 3/9 = 0.0106
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Naive Bayes Subtleties

1. Conditional independence assumption 1s often
violated

P(a,,a,,...,a, |v;) = HP(al. V)

... but 1t works surprisingly well anyway. Note
that you do not need estimated posteriors to be
correct; need only that

arg IBS;( P(vj)H P(a;|v;)=arg 13}'21;( P(v,)P(a,,...,a,|v;)

* see Domingos & Pazzani (1996) for analysis

* Naive Bayes posteriors often unrealistically close
tol or0
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Naive Bayes Subtleties

2. What if none of the training instances with target
value v; have attribute value a;? Then

P(a |v;)=0,and..
P(VJ)HP(CIZ- [v;)=0

Typical solution is Bayesian estimate for P(a, |v,)

2 +
P(a;|v;) < T TP

n-+m

* n1s number of training examples for which v=v,

* n,1s number of examples for which v=v;and a=gq,

e pis prior estimate for P(a; |v;)

* m 1s weight given to prior (1.e., number of
“virtual” examples)
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Bayesian Belief Networks

Interesting because

* Naive Bayes assumption of conditional
independence 1s too restrictive

 But it 1s intractable without some such
assumptions. ..

* Bayesian belief networks describe conditional
independence among subsets of variables

* allows combing prior knowledge about
(in)dependence among variables with observed

training data
 (also called Bayes Nets)
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Conditional Independence

Definition: X 1s conditionally independent of Y
given Z if the probability distribution governing X
1s independent of the value of Y given the value of
Z; that 1s, 1f
(Vx,y,,2)P(X=x,|Y =y, Z=2)=P(X =x,|Z=2z)
more compactly we write

P(XY,Z) = P(X|Z)
Example: Thunder 1s conditionally independent of
Rain given Lightning
P(Thunder|Rain,Lightning)=P(Thunder|Lightning)
Naive Bayes uses conditional ind. to justify
P(X.Y|Z)=P(X|Y,Z)P(Y|Z)
=P(X|Z)P(Y|Z)
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Bayesian Belietf Network

BusTourGroup

Network represents a set of conditional independence assumptions

* Each node 1s asserted to be conditionally independent of its
nondescendants, given its immediate predecessors

* Directed acyclic graph
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Bayesian Belietf Network

* Represents joint probability distribution over all
variables

e e.g., P(Storm,BusTourGroup, ..., ForestFire)

* 1n general,
P(yyseesv,) = | | P(v; | Parents(Y,))
i=l1

where Parents(Y,) denotes immediate
predecessors of Y; in graph

* S0, joint distribution 1s fully defined by graph, plus
the P(y,|Parents(Y,))
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Inference in Bayesian Networks

How can one infer the (probabilities of) values of
one or more network variables, given observed
values of others?

* Bayes net contains all information needed

 If only one variable with unknown value, easy to
infer 1t

* In general case, problem i1s NP hard

In practice, can succeed in many cases

 Exact inference methods work well for some
network structures

« Monte Carlo methods “simulate” the network

randomly to calculate approximate solutions
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Learning of Bayesian Networks

Several variants of this learning task
* Network structure might be known or unknown

* Traming examples might provide values of al/l
network variables, or just some

If structure known and observe all variables
* Then 1t 1s easy as training a Naive Bayes classifier
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Learning Bayes Net

Suppose structure known, variables partially
observable

e.g., observe ForestFire, Storm, BusTourGroup,
Thunder, but not Lightning, Campfire, ...

* Similar to training neural network with hidden
units

 In fact, can learn network conditional probability
tables using gradient ascent!

» Converge to network £ that (locally) maximizes
P(Dlh)
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Gradient Ascent for Bayes Nets

Let w;, denote one entry in the conditional
probability table for variable Y, in the network

wy =P(Yi=yij|Parents(Y;)=the list uy of values)

e.g., if Y, = Campfire, then u,; might be (Storm=T,
BusTourGroup=F)

Perform gradient ascent by repeatedly

1. Update all w;; using training data D
By uy | d)
m,

yk yk
deD Wijk

2. Then renormalize the w;; to assure
Z W = , 0< Wi <1
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Summary of Bayes Belief Networks

* Combine prior knowledge with observed data

* Impact of prior knowledge (when correct!) is to
lower the sample complexity

 Active research area
— Extend from Boolean to real-valued variables
— Parameterized distributions instead of tables

— Extend to first-order instead of propositional
systems

— More effective inference methods
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